
ListenBrainz Documentation
Release 0.1.0

MetaBrainz Foundation

Mar 30, 2023

API DOCUMENTATION

1 Contents 3
1.1 ListenBrainz API . 3
1.2 Usage Examples . 52
1.3 JSON Documentation . 59
1.4 Client Libraries . 66
1.5 Last.FM Compatible API for ListenBrainz . 67
1.6 Data Dumps . 68
1.7 Server development . 70
1.8 Spark development . 75
1.9 Architecture . 77
1.10 Spark Architecture . 79
1.11 MBID Mapping . 80
1.12 Scripts . 81
1.13 Production Deployment . 100
1.14 Building Docker Images . 100
1.15 Data Dumps . 102
1.16 MBID Mapping . 103
1.17 Debugging Spotify Reader . 104
1.18 Updating Production Database Schema . 104
1.19 Pull Requests Policy . 105

2 Indices and tables 107

HTTP Routing Table 109

Index 111

i

ii

ListenBrainz Documentation, Release 0.1.0

ListenBrainz is a project by the MetaBrainz foundation which allows you to publicly store a record of all of the songs
that you listen to. Using this data, we provide statistics, recommendations, and a platform for you and other developers
to explore this data.

If you want to use the ListenBrainz API to read or submit data, see the API documentation. You also may want to
review the JSON documentation.

If you are interested in contributing to ListenBrainz as a developer, see the Developer documentation.

We also publish some maintainer documentation, which is used by the MetaBrainz team to run the ListenBrainz site.

API DOCUMENTATION 1

ListenBrainz Documentation, Release 0.1.0

2 API DOCUMENTATION

CHAPTER

ONE

CONTENTS

1.1 ListenBrainz API

All endpoints have this root URL for our current production site.

• API Root URL: https://api.listenbrainz.org

Note: All ListenBrainz services are only available on HTTPS!

1.1.1 Reference

Core

The ListenBrainz server supports the following end-points for submitting and fetching listens.

GET /1/search/users/

POST /1/submit-listens

Submit listens to the server. A user token (found on https://listenbrainz.org/profile/) must be provided in the
Authorization header! Each request should also contain at least one listen in the payload.

Listens should be submitted for tracks when the user has listened to half the track or 4 minutes of the track,
whichever is lower. If the user hasn’t listened to 4 minutes or half the track, it doesn’t fully count as a listen and
should not be submitted.

For complete details on the format of the JSON to be POSTed to this endpoint, see JSON Documentation.

Request Headers

• Authorization – Token <user token>

• Content-Type – application/json

Status Codes

• 200 OK – listen(s) accepted.

• 400 Bad Request – invalid JSON sent, see error message for details.

• 401 Unauthorized – invalid authorization. See error message for details.

Response Headers

• Content-Type – application/json

3

https://listenbrainz.org/profile/
https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5

ListenBrainz Documentation, Release 0.1.0

GET /1/user/(user_name)/listens
Get listens for user user_name. The format for the JSON returned is defined in our JSON Documentation.

If none of the optional arguments are given, this endpoint will return the DEFAULT_ITEMS_PER_GET most re-
cent listens. The optional max_ts and min_ts UNIX epoch timestamps control at which point in time to start
returning listens. You may specify max_ts or min_ts, but not both in one call. Listens are always returned in
descending timestamp order.

Parameters

• max_ts – If you specify a max_ts timestamp, listens with listened_at less than (but not
including) this value will be returned.

• min_ts – If you specify a min_ts timestamp, listens with listened_at greater than (but not
including) this value will be returned.

• count – Optional, number of listens to return. Default: DEFAULT_ITEMS_PER_GET . Max:
MAX_ITEMS_PER_GET

Status Codes

• 200 OK – Yay, you have data!

• 404 Not Found – The requested user was not found.

Response Headers

• Content-Type – application/json

GET /1/user/(user_name)/listen-count

Get the number of listens for a user user_name.

The returned listen count has an element ‘payload’ with only key: ‘count’ which unsurprisingly con-
tains the listen count for the user.

Status Codes

• 200 OK – Yay, you have listen counts!

• 404 Not Found – The requested user was not found.

Response Headers

• Content-Type – application/json

GET /1/user/(user_name)/playing-now
Get the listen being played right now for user user_name.

This endpoint returns a JSON document with a single listen in the same format as the /user/<user_name>/
listens endpoint, with one key difference, there will only be one listen returned at maximum and the listen will
not contain a listened_at element.

The format for the JSON returned is defined in our JSON Documentation.

Status Codes

• 200 OK – Yay, you have data!

• 404 Not Found – The requested user was not found.

Response Headers

• Content-Type – application/json

4 Chapter 1. Contents

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5

ListenBrainz Documentation, Release 0.1.0

GET /1/user/(user_name)/similar-users
Get list of users who have similar music tastes (based on their listen history) for a given user. Returns an array
of dicts like these:

{
"user_name": "hwnrwx",
"similarity": 0.1938480256

}

Parameters

• user_name – the MusicBrainz ID of the user whose similar users are being requested.

Status Codes

• 200 OK – Yay, you have data!

• 404 Not Found – The requested user was not found.

Response Headers

• Content-Type – application/json

GET /1/user/(user_name)/similar-to/
other_user_name
Get the similarity of the user and the other user, based on their listening history. Returns a single dict:

{
"user_name": "other_user",
"similarity": 0.1938480256

}

Parameters

• user_name – the MusicBrainz ID of the the one user

• other_user_name – the MusicBrainz ID of the other user whose similar users are

Status Codes

• 200 OK – Yay, you have data!

• 404 Not Found – The requested user was not found.

Response Headers

• Content-Type – application/json

GET /1/validate-token

Check whether a User Token is a valid entry in the database.

In order to query this endpoint, send a GET request with the Authorization header set to the value Token [the
token value].

Note: This endpoint also checks for token argument in query params (example: /validate-token?token=token-
to-check) if the Authorization header is missing for backward compatibility.

A JSON response, with the following format, will be returned.

1.1. ListenBrainz API 5

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5

ListenBrainz Documentation, Release 0.1.0

• If the given token is valid:

{
"code": 200,
"message": "Token valid.",
"valid": true,
"user_name": "MusicBrainz ID of the user with the passed token"

}

• If the given token is invalid:

{
"code": 200,
"message": "Token invalid.",
"valid": false,

}

Status Codes

• 200 OK – The user token is valid/invalid.

• 400 Bad Request – No token was sent to the endpoint.

POST /1/delete-listen

Delete a particular listen from a user’s listen history. This checks for the correct authorization token and deletes
the listen.

Note: The listen is not deleted immediately, but is scheduled for deletion, which usually happens shortly after
the hour.

The format of the JSON to be POSTed to this endpoint is:

{
"listened_at": 1,
"recording_msid": "d23f4719-9212-49f0-ad08-ddbfbfc50d6f"

}

Request Headers

• Authorization – Token <user token>

• Content-Type – application/json

Status Codes

• 200 OK – listen deleted.

• 400 Bad Request – invalid JSON sent, see error message for details.

• 401 Unauthorized – invalid authorization. See error message for details.

Response Headers

• Content-Type – application/json

6 Chapter 1. Contents

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5

ListenBrainz Documentation, Release 0.1.0

GET /1/user/(playlist_user_name)/playlists
Fetch playlist metadata in JSPF format without recordings for the given user. If a user token is provided in the
Authorization header, return private playlists as well as public playlists for that user.

Parameters

• count (int) – The number of playlists to return (for pagination). Default
DEFAULT_NUMBER_OF_PLAYLISTS_PER_CALL

• offset (int) – The offset of into the list of playlists to return (for pagination)

Status Codes

• 200 OK – Yay, you have data!

• 404 Not Found – User not found

Response Headers

• Content-Type – application/json

GET /1/user/(playlist_user_name)/playlists/createdfor
Fetch playlist metadata in JSPF format without recordings that have been created for the user. Createdfor playlists
are all public, so no Authorization is needed for this call.

Parameters

• count (int) – The number of playlists to return (for pagination). Default
DEFAULT_NUMBER_OF_PLAYLISTS_PER_CALL

• offset (int) – The offset of into the list of playlists to return (for pagination)

Status Codes

• 200 OK – Yay, you have data!

• 404 Not Found – User not found

Response Headers

• Content-Type – application/json

GET /1/user/(playlist_user_name)/playlists/collaborator
Fetch playlist metadata in JSPF format without recordings for which a user is a collaborator. If a playlist is
private, it will only be returned if the caller is authorized to edit that playlist.

Parameters

• count (int) – The number of playlists to return (for pagination). Default
DEFAULT_NUMBER_OF_PLAYLISTS_PER_CALL

• offset (int) – The offset of into the list of playlists to return (for pagination)

Status Codes

• 200 OK – Yay, you have data!

• 404 Not Found – User not found

Response Headers

• Content-Type – application/json

1.1. ListenBrainz API 7

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5

ListenBrainz Documentation, Release 0.1.0

GET /1/latest-import

Get the timestamp of the newest listen submitted by a user in previous imports to ListenBrainz.

In order to get the timestamp for a user, make a GET request to this endpoint. The data returned will be JSON
of the following format:

{
"musicbrainz_id": "the MusicBrainz ID of the user",
"latest_import": "the timestamp of the newest listen submitted in previous␣

→˓imports. Defaults to 0"
}

Query Parameters

• user_name (str) – the MusicBrainz ID of the user whose data is needed

Status Codes

• 200 OK – Yay, you have data!

Response Headers

• Content-Type – application/json

POST /1/latest-import

Update the timestamp of the newest listen submitted by a user in an import to ListenBrainz.

In order to update the timestamp of a user, you’ll have to provide a user token in the Authorization Header. User
tokens can be found on https://listenbrainz.org/profile/.

The JSON that needs to be posted must contain a field named ts in the root with a valid unix timestamp. Example:

{
"ts": 0

}

Request Headers

• Authorization – Token <user token>

Status Codes

• 200 OK – latest import timestamp updated

• 400 Bad Request – invalid JSON sent, see error message for details.

• 401 Unauthorized – invalid authorization. See error message for details.

Timestamps

All timestamps used in ListenBrainz are UNIX epoch timestamps in UTC. When submitting timestamps to us, please
ensure that you have no timezone adjustments on your timestamps.

8 Chapter 1. Contents

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://listenbrainz.org/profile/
https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2

ListenBrainz Documentation, Release 0.1.0

Constants

Constants that are relevant to using the API:

listenbrainz.webserver.views.api_tools.MAX_LISTEN_PAYLOAD_SIZE = 10240000

The maximum size of a payload in bytes. The same as MAX_LISTEN_SIZE *
MAX_LISTENS_PER_REQUEST.

listenbrainz.webserver.views.api_tools.MAX_LISTEN_SIZE = 10240

Maximum overall listen size in bytes, to prevent egregious spamming.

listenbrainz.webserver.views.api_tools.MAX_DURATION_LIMIT = 2073600

The max permitted value of duration field - 24 days

listenbrainz.webserver.views.api_tools.MAX_DURATION_MS_LIMIT = 2073600000

The max permitted value of duration_ms field - 24 days

listenbrainz.webserver.views.api_tools.MAX_LISTENS_PER_REQUEST = 1000

The maximum number of listens in a request.

listenbrainz.webserver.views.api_tools.MAX_ITEMS_PER_GET = 100

The maximum number of listens returned in a single GET request.

listenbrainz.webserver.views.api_tools.DEFAULT_ITEMS_PER_GET = 25

The default number of listens returned in a single GET request.

listenbrainz.webserver.views.api_tools.MAX_TAGS_PER_LISTEN = 50

The maximum number of tags per listen.

listenbrainz.webserver.views.api_tools.MAX_TAG_SIZE = 64

The maximum length of a tag

listenbrainz.listenstore.LISTEN_MINIMUM_TS = 1033430400

The minimum acceptable value for listened_at field

Playlists

The playlists API allows for the creation and editing of lists of recordings

GET /1/user/(playlist_user_name)/playlists
Fetch playlist metadata in JSPF format without recordings for the given user. If a user token is provided in the
Authorization header, return private playlists as well as public playlists for that user.

Parameters

• count (int) – The number of playlists to return (for pagination). Default
DEFAULT_NUMBER_OF_PLAYLISTS_PER_CALL

• offset (int) – The offset of into the list of playlists to return (for pagination)

Status Codes

• 200 OK – Yay, you have data!

• 404 Not Found – User not found

Response Headers

• Content-Type – application/json

1.1. ListenBrainz API 9

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5

ListenBrainz Documentation, Release 0.1.0

GET /1/user/(playlist_user_name)/playlists/createdfor
Fetch playlist metadata in JSPF format without recordings that have been created for the user. Createdfor playlists
are all public, so no Authorization is needed for this call.

Parameters

• count (int) – The number of playlists to return (for pagination). Default
DEFAULT_NUMBER_OF_PLAYLISTS_PER_CALL

• offset (int) – The offset of into the list of playlists to return (for pagination)

Status Codes

• 200 OK – Yay, you have data!

• 404 Not Found – User not found

Response Headers

• Content-Type – application/json

GET /1/user/(playlist_user_name)/playlists/collaborator
Fetch playlist metadata in JSPF format without recordings for which a user is a collaborator. If a playlist is
private, it will only be returned if the caller is authorized to edit that playlist.

Parameters

• count (int) – The number of playlists to return (for pagination). Default
DEFAULT_NUMBER_OF_PLAYLISTS_PER_CALL

• offset (int) – The offset of into the list of playlists to return (for pagination)

Status Codes

• 200 OK – Yay, you have data!

• 404 Not Found – User not found

Response Headers

• Content-Type – application/json

POST /1/playlist/create

Create a playlist. The playlist must be in JSPF format with MusicBrainz extensions, which is defined here:
https://musicbrainz.org/doc/jspf . To create an empty playlist, you can send an empty playlist with only the
title field filled out. If you would like to create a playlist populated with recordings, each of the track items in
the playlist must have an identifier element that contains the MusicBrainz recording that includes the recording
MBID.

When creating a playlist, only the playlist title and the track identifier elements will be used – all other elements
in the posted JSPF wil be ignored.

If a created_for field is found and the user is not an approved playlist bot, then a 403 forbidden will be raised.

Request Headers

• Authorization – Token <user token>

Status Codes

• 200 OK – playlist accepted.

• 400 Bad Request – invalid JSON sent, see error message for details.

• 401 Unauthorized – invalid authorization. See error message for details.

10 Chapter 1. Contents

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://musicbrainz.org/doc/jspf
https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2

ListenBrainz Documentation, Release 0.1.0

• 403 Forbidden – forbidden. The submitting user is not allowed to create playlists for other
users.

Response Headers

• Content-Type – application/json

POST /1/playlist/edit/(playlist_mbid)
Edit the private/public status, name, description or list of collaborators for an exising playlist. The Authorization
header must be set and correspond to the owner of the playlist otherwise a 403 error will be returned. All fields
will be overwritten with new values.

Request Headers

• Authorization – Token <user token>

Status Codes

• 200 OK – playlist accepted.

• 400 Bad Request – invalid JSON sent, see error message for details.

• 401 Unauthorized – invalid authorization. See error message for details.

• 403 Forbidden – forbidden. The subitting user is not allowed to edit playlists for other users.

Response Headers

• Content-Type – application/json

GET /1/playlist/(playlist_mbid)
Fetch the given playlist.

Parameters

• playlist_mbid (str) – The playlist mbid to fetch.

• fetch_metadata (bool) – Optional, pass value ‘false’ to skip lookup up recording metadata

Status Codes

• 200 OK – Yay, you have data!

• 404 Not Found – Playlist not found

• 401 Unauthorized – Invalid authorization. See error message for details.

Response Headers

• Content-Type – application/json

POST /1/playlist/(playlist_mbid)/item/add

POST /1/playlist/(playlist_mbid)/item/add/
int: offset
Append recordings to an existing playlist by posting a playlist with one of more recordings in it. The playlist
must be in JSPF format with MusicBrainz extensions, which is defined here: https://musicbrainz.org/doc/jspf .

If the offset is provided in the URL, then the recordings will be added at that offset, otherwise they will be added
at the end of the playlist.

You may only add MAX_RECORDINGS_PER_ADD recordings in one call to this endpoint.

Request Headers

• Authorization – Token <user token>

1.1. ListenBrainz API 11

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://musicbrainz.org/doc/jspf
https://www.rfc-editor.org/rfc/rfc7235#section-4.2

ListenBrainz Documentation, Release 0.1.0

Status Codes

• 200 OK – playlist accepted.

• 400 Bad Request – invalid JSON sent, see error message for details.

• 401 Unauthorized – invalid authorization. See error message for details.

• 403 Forbidden – forbidden. the requesting user was not allowed to carry out this operation.

Response Headers

• Content-Type – application/json

POST /1/playlist/(playlist_mbid)/item/move
To move an item in a playlist, the POST data needs to specify the recording MBID and current index of the track
to move (from), where to move it to (to) and how many tracks from that position should be moved (count). The
format of the post data should look as follows:

{
"mbid": "<mbid>",
"from": 3,
"to": 4,
"count": 2

}

Request Headers

• Authorization – Token <user token>

Status Codes

• 200 OK – move operation succeeded

• 400 Bad Request – invalid JSON sent, see error message for details.

• 401 Unauthorized – invalid authorization. See error message for details.

• 403 Forbidden – forbidden. the requesting user was not allowed to carry out this operation.

Response Headers

• Content-Type – application/json

POST /1/playlist/(playlist_mbid)/item/delete
To delete an item in a playlist, the POST data needs to specify the recording MBID and current index of the track
to delete, and how many tracks from that position should be moved deleted. The format of the post data should
look as follows:

{
"index": 3,
"count": 2

}

Request Headers

• Authorization – Token <user token>

Status Codes

• 200 OK – playlist accepted.

12 Chapter 1. Contents

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

ListenBrainz Documentation, Release 0.1.0

• 400 Bad Request – invalid JSON sent, see error message for details.

• 401 Unauthorized – invalid authorization. See error message for details.

• 403 Forbidden – forbidden. the requesting user was not allowed to carry out this operation.

Response Headers

• Content-Type – application/json

POST /1/playlist/(playlist_mbid)/delete
Delete a playlist. POST body data does not need to contain anything.

Request Headers

• Authorization – Token <user token>

Status Codes

• 200 OK – playlist deleted.

• 401 Unauthorized – invalid authorization. See error message for details.

• 403 Forbidden – forbidden. the requesting user was not allowed to carry out this operation.

• 404 Not Found – Playlist not found

Response Headers

• Content-Type – application/json

POST /1/playlist/(playlist_mbid)/copy
Copy a playlist – the new playlist will be given the name “Copy of <playlist_name>”. POST body data does not
need to contain anything.

Request Headers

• Authorization – Token <user token>

Status Codes

• 200 OK – playlist copied.

• 401 Unauthorized – invalid authorization. See error message for details.

• 404 Not Found – Playlist not found

Response Headers

• Content-Type – application/json

POST /1/playlist/(playlist_mbid)/export/
service
Export a playlist to an external service.

Request Headers

• Authorization – Token <user token>

Status Codes

• 200 OK – playlist copied.

• 401 Unauthorized – invalid authorization. See error message for details.

• 404 Not Found – Playlist not found

Response Headers

1.1. ListenBrainz API 13

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

ListenBrainz Documentation, Release 0.1.0

• Content-Type – application/json

Recordings

Feedback API

These API endpoints allow to submit and retrieve feedback for a user’s recordings

POST /1/feedback/recording-feedback

Submit recording feedback (love/hate) to the server. A user token (found on https://listenbrainz.org/profile/)
must be provided in the Authorization header! Each request should contain only one feedback in the payload.

For complete details on the format of the JSON to be POSTed to this endpoint, see feedback-json-doc.

Request Headers

• Authorization – Token <user token>

Status Codes

• 200 OK – feedback accepted.

• 400 Bad Request – invalid JSON sent, see error message for details.

• 401 Unauthorized – invalid authorization. See error message for details.

Response Headers

• Content-Type – application/json

GET /1/feedback/user/(user_name)/get-feedback
Get feedback given by user user_name. The format for the JSON returned is defined in our feedback-json-doc.

If the optional argument score is not given, this endpoint will return all the feedback submitted by the user.
Otherwise filters the feedback to be returned by score.

Parameters

• score (int) – Optional, If 1 then returns the loved recordings, if -1 returns hated recordings.

• count (int) – Optional, number of feedback items to return, Default:
DEFAULT_ITEMS_PER_GET Max: MAX_ITEMS_PER_GET.

• offset (int) – Optional, number of feedback items to skip from the beginning, for pagina-
tion. Ex. An offset of 5 means the top 5 feedback will be skipped, defaults to 0.

• metadata (str) – Optional, ‘true’ or ‘false’ if this call should return the metadata for the
feedback.

Status Codes

• 200 OK – Yay, you have data!

Response Headers

• Content-Type – application/json

GET /1/feedback/recording/(recording_mbid)/get-feedback-mbid
Get feedback for recording with given recording_mbid. The format for the JSON returned is defined in our
feedback-json-doc.

Parameters

• score (int) – Optional, If 1 then returns the loved recordings, if -1 returns hated recordings.

14 Chapter 1. Contents

https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://listenbrainz.org/profile/
https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5

ListenBrainz Documentation, Release 0.1.0

• count (int) – Optional, number of feedback items to return, Default:
DEFAULT_ITEMS_PER_GET Max: MAX_ITEMS_PER_GET.

• offset (int) – Optional, number of feedback items to skip from the beginning, for pagina-
tion. Ex. An offset of 5 means the top 5 feedback will be skipped, defaults to 0.

Status Codes

• 200 OK – Yay, you have data!

Response Headers

• Content-Type – application/json

GET /1/feedback/recording/(recording_msid)/get-feedback
Get feedback for recording with given recording_msid. The format for the JSON returned is defined in our
feedback-json-doc.

Parameters

• score (int) – Optional, If 1 then returns the loved recordings, if -1 returns hated recordings.

• count (int) – Optional, number of feedback items to return, Default:
DEFAULT_ITEMS_PER_GET Max: MAX_ITEMS_PER_GET.

• offset (int) – Optional, number of feedback items to skip from the beginning, for pagina-
tion. Ex. An offset of 5 means the top 5 feedback will be skipped, defaults to 0.

Status Codes

• 200 OK – Yay, you have data!

Response Headers

• Content-Type – application/json

GET /1/feedback/user/(user_name)/get-feedback-for-recordings
Get feedback given by user user_name for the list of recordings supplied. The format for the JSON returned is
defined in our feedback-json-doc.

If the feedback for given recording MSID doesn’t exist then a score 0 is returned for that recording.

Note: If you get a 502 error while querying this endpoint, consider reducing the number of total recordings you
are querying in 1 request. As a rule of thumb, requesting maximum ~75 recordings in 1 request will avert the
error.

The reason this error occurs is because the recording uuids are query params which are part of the request url.
The length of the url is subject to a general limit imposed at the middleware level so requests with long urls never
reach the ListenBrainz backend. Due to the same reason, the backend cannot provide a meaningful error.

Parameters

• recordings (str) – comma separated list of recording_msids for which feedback records
are to be fetched. this param is deprecated and will be removed in the future. use record-
ing_msids instead.

• recording_msids (str) – comma separated list of recording_msids for which feedback
records are to be fetched.

• recording_mbids (str) – comma separated list of recording_mbids for which feedback
records are to be fetched.

1.1. ListenBrainz API 15

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5

ListenBrainz Documentation, Release 0.1.0

Status Codes

• 200 OK – Yay, you have data!

Response Headers

• Content-Type – application/json

POST /1/feedback/import

Import feedback from external service.

Pinned Recording API

These API endpoints allow submitting, deleting, and retrieving ListenBrainz pinned recordings for users.

POST /1/pin

Pin a recording for user. A user token (found on https://listenbrainz.org/profile/) must be provided in the Autho-
rization header! Each request should contain only one pinned recording item in the payload.

The format of the JSON to be POSTed to this endpoint should look like the following:

{
"recording_msid": "40ef0ae1-5626-43eb-838f-1b34187519bf",
"recording_mbid": "<this field is optional>",
"blurb_content": "Wow..",
"pinned_until": 1824001816

}

Request Headers

• Authorization – Token <user token>

Status Codes

• 200 OK – feedback accepted.

• 400 Bad Request – invalid JSON sent, see error message for details.

• 401 Unauthorized – invalid authorization. See error message for details.

Response Headers

• Content-Type – application/json

POST /1/pin/unpin

Unpins the currently active pinned recording for the user. A user token (found on https://listenbrainz.org/profile/)
must be provided in the Authorization header!

Request Headers

• Authorization – Token <user token>

Status Codes

• 200 OK – recording unpinned.

• 401 Unauthorized – invalid authorization. See error message for details.

• 404 Not Found – could not find the active recording to unpin for the user. See error message
for details.

16 Chapter 1. Contents

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://listenbrainz.org/profile/
https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://listenbrainz.org/profile/
https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

ListenBrainz Documentation, Release 0.1.0

Response Headers

• Content-Type – application/json

POST /1/pin/delete/(row_id)
Deletes the pinned recording with given row_id from the server. A user token (found on https://listenbrainz.
org/profile/) must be provided in the Authorization header!

Request Headers

• Authorization – Token <user token>

Parameters

• row_id (int) – the row_id of the pinned recording that should be deleted.

Status Codes

• 200 OK – recording unpinned.

• 401 Unauthorized – invalid authorization. See error message for details.

• 404 Not Found – the requested row_id for the user was not found.

Response Headers

• Content-Type – application/json

GET /1/(user_name)/pins
Get a list of all recordings ever pinned by a user with given user_name in descending order of the time they
were originally pinned. The JSON returned by the API will look like the following:

{
"count": 10,
"offset": 0,
"pinned_recordings": [

{
"blurb_content": "Awesome recording!",
"created": 1623997168,
"row_id": 10,
"pinned_until": 1623997485,
"recording_mbid": null,
"recording_msid": "fd7d9162-a284-4a10-906c-faae4f1e166b"
"track_metadata": {

"artist_name": "Rick Astley",
"track_name": "Never Gonna Give You Up"

}
},
"-- more pinned recording items here ---"

],
"total_count": 10,
"user_name": "-- the MusicBrainz ID of the user --"

}

Parameters

• user_name (str) – the MusicBrainz ID of the user whose pin track history requested.

• count (int) – Optional, number of pinned recording items to return, Default:
DEFAULT_ITEMS_PER_GET Max: MAX_ITEMS_PER_GET

1.1. ListenBrainz API 17

https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://listenbrainz.org/profile/
https://listenbrainz.org/profile/
https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5

ListenBrainz Documentation, Release 0.1.0

• offset (int) – Optional, number of pinned recording items to skip from the beginning, for
pagination. Ex. An offset of 5 means the most recent 5 pinned recordings from the user will
be skipped, defaults to 0

Status Codes

• 200 OK – Yay, you have data!

• 400 Bad Request – Invalid query parameters. See error message for details.

• 404 Not Found – The requested user was not found.

Response Headers

• Content-Type – application/json

GET /1/(user_name)/pins/following
Get a list containing the active pinned recordings for all users in a user’s user_name following list. The returned
pinned recordings are sorted in descending order of the time they were pinned. The JSON returned by the API
will look like the following:

{
"count": 1,
"offset": 0,
"pinned_recordings": [

{
"blurb_content": "Spectacular recording!",
"created": 1624000841,
"row_id": 1,
"pinned_until": 1624605641,
"recording_mbid": null,
"recording_msid": "40ef0ae1-5626-43eb-838f-1b34187519bf",
"track_metadata": {

"artist_name": "Rick Astley",
"track_name": "Never Gonna Give You Up"

},
"user_name": "-- the MusicBrainz ID of the user who pinned this recording --

→˓"
},
"-- more pinned recordings from different users here ---"

],
"user_name": "-- the MusicBrainz ID of the original user --"

}

Parameters

• user_name (str) – the MusicBrainz ID of the user whose followed user’s pinned recordings
are being requested.

• count (int) – Optional, number of pinned recording items to return, Default:
DEFAULT_ITEMS_PER_GET Max: MAX_ITEMS_PER_GET

• offset (int) – Optional, number of pinned recording items to skip from the beginning, for
pagination. Ex. An offset of 5 means the most recent pinned recordings from the first 5 users
will be skipped, defaults to 0

Status Codes

• 200 OK – Yay, you have data!

18 Chapter 1. Contents

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

ListenBrainz Documentation, Release 0.1.0

• 400 Bad Request – Invalid query parameters. See error message for details.

• 404 Not Found – The requested user was not found.

Response Headers

• Content-Type – application/json

GET /1/(user_name)/pins/current
Get the currently pinned recording by a user with given user_name. The JSON returned by the API will look
like the following:

{
"pinned_recording": {

"blurb_content": "Awesome recording!",
"created": 1623997168,
"row_id": 10,
"pinned_until": 1623997485,
"recording_mbid": null,
"recording_msid": "fd7d9162-a284-4a10-906c-faae4f1e166b"
"track_metadata": {
"artist_name": "Rick Astley",

"track_name": "Never Gonna Give You Up"
}

},
"user_name": "-- the MusicBrainz ID of the user --"

}

If there is no current pin for the user, “pinned_recording” field will be null.

Parameters

• user_name (str) – the MusicBrainz ID of the user whose pin track history requested.

Status Codes

• 200 OK – Yay, you have data!

• 404 Not Found – The requested user was not found.

Response Headers

• Content-Type – application/json

Statistics

ListenBrainz has a statistics infrastructure that collects and computes statistics from the listen data that has been stored
in the database. The endpoints in this section offer a way to get this data programmatically.

GET /1/stats/user/(user_name)/artists
Get top artists for user user_name.

A sample response from the endpoint may look like:

{
"payload": {

"artists": [
{

(continues on next page)

1.1. ListenBrainz API 19

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5

ListenBrainz Documentation, Release 0.1.0

(continued from previous page)

"artist_mbids": ["93e6118e-7fa8-49f6-9e02-699a1ebce105"],
"artist_name": "The Local train",
"listen_count": 385

},
{
"artist_mbids": ["ae9ed5e2-4caf-4b3d-9cb3-2ad626b91714"],
"artist_name": "Lenka",
"listen_count": 333

},
{
"artist_mbids": ["cc197bad-dc9c-440d-a5b5-d52ba2e14234"],
"artist_name": "Coldplay",
"listen_count": 321

}
],
"count": 3,
"total_artist_count": 175,
"range": "all_time",
"last_updated": 1588494361,
"user_id": "John Doe",
"from_ts": 1009823400,
"to_ts": 1590029157

}
}

Note:

• This endpoint is currently in beta

• artist_mbids is an optional field and may not be present in all the responses

Parameters

• count (int) – Optional, number of artists to return, Default: DEFAULT_ITEMS_PER_GET
Max: MAX_ITEMS_PER_GET

• offset (int) – Optional, number of artists to skip from the beginning, for pagination. Ex.
An offset of 5 means the top 5 artists will be skipped, defaults to 0

• range (str) – Optional, time interval for which statistics should be returned, possible values
are ALLOWED_STATISTICS_RANGE, defaults to all_time

Status Codes

• 200 OK – Successful query, you have data!

• 204 No Content – Statistics for the user haven’t been calculated, empty response will be
returned

• 400 Bad Request – Bad request, check response['error'] for more details

• 404 Not Found – User not found

Response Headers

• Content-Type – application/json

20 Chapter 1. Contents

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5

ListenBrainz Documentation, Release 0.1.0

GET /1/stats/user/(user_name)/releases
Get top releases for user user_name.

A sample response from the endpoint may look like:

{
"payload": {

"releases": [
{

"artist_mbids": [],
"artist_name": "Coldplay",
"listen_count": 26,
"release_mbid": "",
"release_name": "Live in Buenos Aires"

},
{

"artist_mbids": [],
"artist_name": "Ellie Goulding",
"listen_count": 25,
"release_mbid": "",
"release_name": "Delirium (Deluxe)"

},
{

"artist_mbids": [],
"artist_name": "The Fray",
"listen_count": 25,
"release_mbid": "",
"release_name": "How to Save a Life"

},
],
"count": 3,
"total_release_count": 175,
"range": "all_time",
"last_updated": 1588494361,
"user_id": "John Doe",
"from_ts": 1009823400,
"to_ts": 1590029157

}
}

Note:

• This endpoint is currently in beta

• artist_mbids and release_mbid are optional fields and may not be present in all the responses

Parameters

• count (int) – Optional, number of releases to return, Default: DEFAULT_ITEMS_PER_GET
Max: MAX_ITEMS_PER_GET

• offset (int) – Optional, number of releases to skip from the beginning, for pagination. Ex.
An offset of 5 means the top 5 releases will be skipped, defaults to 0

1.1. ListenBrainz API 21

ListenBrainz Documentation, Release 0.1.0

• range (str) – Optional, time interval for which statistics should be returned, possible values
are ALLOWED_STATISTICS_RANGE, defaults to all_time

Status Codes

• 200 OK – Successful query, you have data!

• 204 No Content – Statistics for the user haven’t been calculated, empty response will be
returned

• 400 Bad Request – Bad request, check response['error'] for more details

• 404 Not Found – User not found

Response Headers

• Content-Type – application/json

GET /1/stats/user/(user_name)/recordings
Get top recordings for user user_name.

A sample response from the endpoint may look like:

{
"payload": {

"recordings": [
{

"artist_mbids": [],
"artist_name": "Ellie Goulding",
"listen_count": 25,
"recording_mbid": "0fe11cd3-0be4-467b-84fa-0bd524d45d74",
"release_mbid": "",
"release_name": "Delirium (Deluxe)",
"track_name": "Love Me Like You Do - From \"Fifty Shades of Grey\""

},
{

"artist_mbids": [],
"artist_name": "The Fray",
"listen_count": 23,
"recording_mbid": "0008ab49-a6ad-40b5-aa90-9d2779265c22",
"release_mbid": "",
"release_name": "How to Save a Life",
"track_name": "How to Save a Life"

}
],
"count": 2,
"total_recording_count": 175,
"range": "all_time",
"last_updated": 1588494361,
"user_id": "John Doe",
"from_ts": 1009823400,
"to_ts": 1590029157

}
}

Note:

22 Chapter 1. Contents

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5

ListenBrainz Documentation, Release 0.1.0

• This endpoint is currently in beta

• We only calculate the top 1000 all_time recordings

• artist_mbids, release_name, release_mbid and recording_mbid are optional fields

and may not be present in all the responses

Parameters

• count (int) – Optional, number of recordings to return, Default:
DEFAULT_ITEMS_PER_GET Max: MAX_ITEMS_PER_GET

• offset (int) – Optional, number of recordings to skip from the beginning, for pagination.
Ex. An offset of 5 means the top 5 recordings will be skipped, defaults to 0

• range (str) – Optional, time interval for which statistics should be returned, possible values
are ALLOWED_STATISTICS_RANGE, defaults to all_time

Status Codes

• 200 OK – Successful query, you have data!

• 204 No Content – Statistics for the user haven’t been calculated, empty response will be
returned

• 400 Bad Request – Bad request, check response['error'] for more details

• 404 Not Found – User not found

Response Headers

• Content-Type – application/json

GET /1/stats/user/(user_name)/listening-activity
Get the listening activity for user user_name. The listening activity shows the number of listens the user has
submitted over a period of time.

A sample response from the endpoint may look like:

{
"payload": {

"from_ts": 1587945600,
"last_updated": 1592807084,
"listening_activity": [

{
"from_ts": 1587945600,
"listen_count": 26,
"time_range": "Monday 27 April 2020",
"to_ts": 1588031999

},
{

"from_ts": 1588032000,
"listen_count": 57,
"time_range": "Tuesday 28 April 2020",
"to_ts": 1588118399

},
{

(continues on next page)

1.1. ListenBrainz API 23

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5

ListenBrainz Documentation, Release 0.1.0

(continued from previous page)

"from_ts": 1588118400,
"listen_count": 33,
"time_range": "Wednesday 29 April 2020",
"to_ts": 1588204799

},
"to_ts": 1589155200,
"user_id": "ishaanshah"

}
}

Note:

• This endpoint is currently in beta

• The example above shows the data for three days only, however we calculate the statistics for the current
time range and the previous time range. For example for weekly statistics the data is calculated for the
current as well as the past week.

• For all_time listening activity statistics we only return the years which have more than zero listens.

Parameters

• range (str) – Optional, time interval for which statistics should be returned, possible values
are ALLOWED_STATISTICS_RANGE, defaults to all_time

Status Codes

• 200 OK – Successful query, you have data!

• 204 No Content – Statistics for the user haven’t been calculated, empty response will be
returned

• 400 Bad Request – Bad request, check response['error'] for more details

• 404 Not Found – User not found

Response Headers

• Content-Type – application/json

GET /1/stats/user/(user_name)/daily-activity
Get the daily activity for user user_name. The daily activity shows the number of listens submitted by the user
for each hour of the day over a period of time. We assume that all listens are in UTC.

A sample response from the endpoint may look like:

{
"payload": {

"from_ts": 1587945600,
"last_updated": 1592807084,
"daily_activity": {

"Monday": [
{

"hour": 0
"listen_count": 26,

},
(continues on next page)

24 Chapter 1. Contents

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5

ListenBrainz Documentation, Release 0.1.0

(continued from previous page)

{
"hour": 1
"listen_count": 30,

},
{

"hour": 2
"listen_count": 4,

},
"..."

],
"Tuesday": ["..."],
"..."

},
"stats_range": "all_time",
"to_ts": 1589155200,
"user_id": "ishaanshah"

}
}

Note:

• This endpoint is currently in beta

Parameters

• range (str) – Optional, time interval for which statistics should be returned, possible values
are ALLOWED_STATISTICS_RANGE, defaults to all_time

Status Codes

• 200 OK – Successful query, you have data!

• 204 No Content – Statistics for the user haven’t been calculated, empty response will be
returned

• 400 Bad Request – Bad request, check response['error'] for more details

• 404 Not Found – User not found

Response Headers

• Content-Type – application/json

GET /1/stats/user/(user_name)/artist-map
Get the artist map for user user_name. The artist map shows the number of artists the user has listened to from
different countries of the world.

A sample response from the endpoint may look like:

{
"payload": {

"from_ts": 1587945600,
"last_updated": 1592807084,
"artist_map": [

{
(continues on next page)

1.1. ListenBrainz API 25

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5

ListenBrainz Documentation, Release 0.1.0

(continued from previous page)

"country": "USA",
"artist_count": 34

},
{

"country": "GBR",
"artist_count": 69

},
{

"country": "IND",
"artist_count": 32

}
],
"stats_range": "all_time"
"to_ts": 1589155200,
"user_id": "ishaanshah"

}
}

Note:

• This endpoint is currently in beta

• We cache the results for this query for a week to improve page load times, if you want to request fresh data
you can use the force_recalculate flag.

Parameters

• range (str) – Optional, time interval for which statistics should be returned, possible values
are ALLOWED_STATISTICS_RANGE, defaults to all_time

• force_recalculate (bool) – Optional, recalculate the data instead of returning the cached
result.

Status Codes

• 200 OK – Successful query, you have data!

• 204 No Content – Statistics for the user haven’t been calculated, empty response will be
returned

• 400 Bad Request – Bad request, check response['error'] for more details

• 404 Not Found – User not found

Response Headers

• Content-Type – application/json

GET /1/stats/sitewide/artists

Get sitewide top artists.

A sample response from the endpoint may look like:

{
"payload": {

"artists": [
(continues on next page)

26 Chapter 1. Contents

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5

ListenBrainz Documentation, Release 0.1.0

(continued from previous page)

{
"artist_mbids": [],
"artist_name": "Kanye West",
"listen_count": 1305

},
{

"artist_mbids": ["0b30341b-b59d-4979-8130-b66c0e475321"],
"artist_name": "Lil Nas X",
"listen_count": 1267

}
],
"offset": 0,
"count": 2,
"range": "year",
"last_updated": 1588494361,
"from_ts": 1009823400,
"to_ts": 1590029157

}
}

Note:

• This endpoint is currently in beta

• artist_mbids is optional field and may not be present in all the entries

• We only calculate the top 1000 artists for each time period.

Parameters

• count (int) – Optional, number of artists to return for each time range, Default:
DEFAULT_ITEMS_PER_GET Max: MAX_ITEMS_PER_GET

• offset (int) – Optional, number of artists to skip from the beginning, for pagination. Ex.
An offset of 5 means the top 5 artists will be skipped, defaults to 0

• range (str) – Optional, time interval for which statistics should be returned, possible values
are ALLOWED_STATISTICS_RANGE, defaults to all_time

Status Codes

• 200 OK – Successful query, you have data!

• 204 No Content – Statistics haven’t been calculated, empty response will be returned

• 400 Bad Request – Bad request, check response['error'] for more details

Response Headers

• Content-Type – application/json

GET /1/stats/sitewide/releases

Get sitewide top releases.

A sample response from the endpoint may look like:

1.1. ListenBrainz API 27

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5

ListenBrainz Documentation, Release 0.1.0

{
"payload": {

"releases": [
{

"artist_mbids": [],
"artist_name": "Coldplay",
"listen_count": 26,
"release_mbid": "",
"release_name": "Live in Buenos Aires"

},
{

"artist_mbids": [],
"artist_name": "Ellie Goulding",
"listen_count": 25,
"release_mbid": "",
"release_name": "Delirium (Deluxe)"

},
{

"artist_mbids": [],
"artist_name": "The Fray",
"listen_count": 25,
"release_mbid": "",
"release_name": "How to Save a Life"

},
],
"offset": 0,
"count": 2,
"range": "year",
"last_updated": 1588494361,
"from_ts": 1009823400,
"to_ts": 1590029157

}
}

Note:

• This endpoint is currently in beta

• artist_mbids and release_mbid are optional fields and may not be present in all the responses

Parameters

• count (int) – Optional, number of artists to return for each time range, Default:
DEFAULT_ITEMS_PER_GET Max: MAX_ITEMS_PER_GET

• offset (int) – Optional, number of artists to skip from the beginning, for pagination. Ex.
An offset of 5 means the top 5 artists will be skipped, defaults to 0

• range (str) – Optional, time interval for which statistics should be returned, possible values
are ALLOWED_STATISTICS_RANGE, defaults to all_time

Status Codes

• 200 OK – Successful query, you have data!

28 Chapter 1. Contents

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

ListenBrainz Documentation, Release 0.1.0

• 204 No Content – Statistics haven’t been calculated, empty response will be returned

• 400 Bad Request – Bad request, check response['error'] for more details

Response Headers

• Content-Type – application/json

GET /1/stats/sitewide/recordings

Get sitewide top recordings.

A sample response from the endpoint may look like:

{
"payload": {

"recordings": [
{

"artist_mbids": [],
"artist_name": "Ellie Goulding",
"listen_count": 25,
"recording_mbid": "0fe11cd3-0be4-467b-84fa-0bd524d45d74",
"release_mbid": "",
"release_name": "Delirium (Deluxe)",
"track_name": "Love Me Like You Do - From \"Fifty Shades of Grey\""

},
{

"artist_mbids": [],
"artist_name": "The Fray",
"listen_count": 23,
"recording_mbid": "0008ab49-a6ad-40b5-aa90-9d2779265c22",
"release_mbid": "",
"release_name": "How to Save a Life",
"track_name": "How to Save a Life"

}
],
"offset": 0,
"count": 2,
"range": "year",
"last_updated": 1588494361,
"from_ts": 1009823400,
"to_ts": 1590029157

}
}

Note:

• This endpoint is currently in beta

• We only calculate the top 1000 all_time recordings

• artist_mbids, release_name, release_mbid and recording_mbid are optional fields and

may not be present in all the responses

Parameters

1.1. ListenBrainz API 29

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5

ListenBrainz Documentation, Release 0.1.0

• count (int) – Optional, number of artists to return for each time range, Default:
DEFAULT_ITEMS_PER_GET Max: MAX_ITEMS_PER_GET

• offset (int) – Optional, number of artists to skip from the beginning, for pagination. Ex.
An offset of 5 means the top 5 artists will be skipped, defaults to 0

• range (str) – Optional, time interval for which statistics should be returned, possible values
are ALLOWED_STATISTICS_RANGE, defaults to all_time

Status Codes

• 200 OK – Successful query, you have data!

• 204 No Content – Statistics haven’t been calculated, empty response will be returned

• 400 Bad Request – Bad request, check response['error'] for more details

Response Headers

• Content-Type – application/json

GET /1/stats/sitewide/listening-activity

Get the listening activity for entire site. The listening activity shows the number of listens the user has submitted
over a period of time.

A sample response from the endpoint may look like:

{
"payload": {

"from_ts": 1587945600,
"last_updated": 1592807084,
"listening_activity": [

{
"from_ts": 1587945600,
"listen_count": 26,
"time_range": "Monday 27 April 2020",
"to_ts": 1588031999

},
{

"from_ts": 1588032000,
"listen_count": 57,
"time_range": "Tuesday 28 April 2020",
"to_ts": 1588118399

},
{

"from_ts": 1588118400,
"listen_count": 33,
"time_range": "Wednesday 29 April 2020",
"to_ts": 1588204799

}
],
"to_ts": 1589155200,
"range": "week"

}
}

Note:

30 Chapter 1. Contents

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5

ListenBrainz Documentation, Release 0.1.0

• This endpoint is currently in beta

• The example above shows the data for three days only, however we calculate the statistics for the current
time range and the previous time range. For example for weekly statistics the data is calculated for the
current as well as the past week.

Parameters

• range (str) – Optional, time interval for which statistics should be returned, possible values
are ALLOWED_STATISTICS_RANGE, defaults to all_time

Status Codes

• 200 OK – Successful query, you have data!

• 204 No Content – Statistics for the user haven’t been calculated, empty response will be
returned

• 400 Bad Request – Bad request, check response['error'] for more details

Response Headers

• Content-Type – application/json

GET /1/stats/sitewide/artist-map

Get the sitewide artist map. The artist map shows the number of artists listened to by users from different countries
of the world.

A sample response from the endpoint may look like:

{
"payload": {

"from_ts": 1587945600,
"last_updated": 1592807084,
"artist_map": [

{
"country": "USA",
"artist_count": 34

},
{

"country": "GBR",
"artist_count": 69

},
{

"country": "IND",
"artist_count": 32

}
],
"stats_range": "all_time"
"to_ts": 1589155200,

}
}

Note:

• This endpoint is currently in beta

1.1. ListenBrainz API 31

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5

ListenBrainz Documentation, Release 0.1.0

• We cache the results for this query for a week to improve page load times, if you want to request fresh data
you can use the force_recalculate flag.

Parameters

• range (str) – Optional, time interval for which statistics should be returned, possible values
are ALLOWED_STATISTICS_RANGE, defaults to all_time

• force_recalculate (bool) – Optional, recalculate the data instead of returning the cached
result.

Status Codes

• 200 OK – Successful query, you have data!

• 204 No Content – Statistics for the user haven’t been calculated, empty response will be
returned

• 400 Bad Request – Bad request, check response['error'] for more details

• 404 Not Found – User not found

Response Headers

• Content-Type – application/json

GET /1/stats/user/(user_name)/year-in-music/
int: year

GET /1/stats/user/(user_name)/year-in-music
Get data for year in music stuff

Constants

Constants that are relevant to using the API:

data.model.common_stat.ALLOWED_STATISTICS_RANGE = ['week', 'month', 'quarter',
'half_yearly', 'year', 'all_time', 'this_week', 'this_month', 'this_year']

list of allowed value for range param accepted by various statistics endpoints

Metadata

The metadata API looks up MusicBrainz metadata for recordings

GET /1/metadata/recording/

This endpoint takes in a list of recording_mbids and returns an array of dicts that contain recording metadata
suitable for showing in a context that requires as much detail about a recording and the artist. Using the inc
parameter, you can control which portions of metadata to fetch.

The data returned by this endpoint can be seen here:

{
"e97f805a-ab48-4c52-855e-07049142113d" : {
"tag" : {
"recording" : [

{
(continues on next page)

32 Chapter 1. Contents

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5

ListenBrainz Documentation, Release 0.1.0

(continued from previous page)

"genre_mbid" : "45eb1d9c-588c-4dc8-9394-a14b7c8f02bc",
"tag" : "trip hop",
"count" : 6

},
{
"count" : 1,
"tag" : "pop",
"genre_mbid" : "911c7bbb-172d-4df8-9478-dbff4296e791"

},
{
"count" : 1,
"genre_mbid" : "608b0471-7531-4854-a348-e698c69cb699",
"tag" : "ambient"

},
{
"count" : 3,
"tag" : "trip-hop"

},
{
"count" : 1,
"genre_mbid" : "cc38aba3-48ed-439a-83b9-f81a34a66598",
"tag" : "downtempo"

},
{
"count" : 3,
"genre_mbid" : "89255676-1f14-4dd8-bbad-fca839d6aff4",
"tag" : "electronic"

},
{
"genre_mbid" : "b7864789-29e6-4965-84e4-463baaa869df",
"tag" : "chanson franaise",
"count" : 1

},
{
"genre_mbid" : "7dc2b20f-3953-4874-b9bf-41b8ba06d20c",
"tag" : "acid jazz",
"count" : 1

}
],
"artist" : [

{
"artist_mbid" : "8f6bd1e4-fbe1-4f50-aa9b-94c450ec0f11",
"tag" : "uk",
"count" : 1

},
{
"genre_mbid" : "ba318056-9ddf-46cd-8b95-61fc993b962d",
"artist_mbid" : "8f6bd1e4-fbe1-4f50-aa9b-94c450ec0f11",
"tag" : "krautrock",
"count" : 2

},
{

(continues on next page)

1.1. ListenBrainz API 33

ListenBrainz Documentation, Release 0.1.0

(continued from previous page)

"count" : 4,
"tag" : "electronic",
"genre_mbid" : "89255676-1f14-4dd8-bbad-fca839d6aff4",
"artist_mbid" : "8f6bd1e4-fbe1-4f50-aa9b-94c450ec0f11"

},
{
"count" : 2,
"artist_mbid" : "8f6bd1e4-fbe1-4f50-aa9b-94c450ec0f11",
"genre_mbid" : "65c97e89-b42b-45c2-a70e-0eca1b8f0ff7",
"tag" : "experimental rock"

},
{
"genre_mbid" : "ec5a14c7-7793-46dc-b858-470183eb63f7",
"artist_mbid" : "8f6bd1e4-fbe1-4f50-aa9b-94c450ec0f11",
"tag" : "folktronica",
"count" : 1

},
{
"count" : 8,
"tag" : "trip hop",
"genre_mbid" : "45eb1d9c-588c-4dc8-9394-a14b7c8f02bc",
"artist_mbid" : "8f6bd1e4-fbe1-4f50-aa9b-94c450ec0f11"

},
{
"count" : 3,
"artist_mbid" : "8f6bd1e4-fbe1-4f50-aa9b-94c450ec0f11",
"tag" : "british"

},
{
"artist_mbid" : "8f6bd1e4-fbe1-4f50-aa9b-94c450ec0f11",
"genre_mbid" : "cc38aba3-48ed-439a-83b9-f81a34a66598",
"tag" : "downtempo",
"count" : 5

},
{
"tag" : "trip-hop",
"artist_mbid" : "8f6bd1e4-fbe1-4f50-aa9b-94c450ec0f11",
"count" : 8

},
{
"count" : 1,
"tag" : "electro-industrial",
"artist_mbid" : "8f6bd1e4-fbe1-4f50-aa9b-94c450ec0f11",
"genre_mbid" : "6e2e809f-8c54-4e0f-aca0-0642771ab3cf"

}
]

},
"recording" : {
"rels" : [

{
"artist_name" : "Beth Gibbons",
"instrument" : null,

(continues on next page)

34 Chapter 1. Contents

ListenBrainz Documentation, Release 0.1.0

(continued from previous page)

"artist_mbid" : "5adcb9d9-5ea2-428d-af46-ef626966e106",
"type" : "vocal"

},
{
"artist_mbid" : "5082a11f-7203-4ff3-ae04-2a0150d3bbb6",
"type" : "instrument",
"instrument" : "Rhodes piano",
"artist_name" : "Geoff Barrow"

},
{
"type" : "instrument",
"artist_mbid" : "619b1116-740e-42e0-bdfe-96af274f79f7",
"instrument" : "guitar",
"artist_name" : "Adrian Utley"

},
{
"artist_name" : "Clive Deamer",
"instrument" : "drums (drum set)",
"type" : "instrument",
"artist_mbid" : "d576e6be-03d1-489c-8c3e-692c6fbfb7ca"

}
]

},
"release" : {
"caa_id" : 829521842,
"mbid" : "76df3287-6cda-33eb-8e9a-044b5e15ffdd"

},
"artist" : [

{
"rels" : {
"official homepage" : "http://www.portishead.co.uk/",
"youtube" : "https://www.youtube.com/channel/UC243a5RnwmItLvwhl0YOxbg

→˓",
"purchase for download" : "https://itunes.apple.com/us/artist/

→˓id853090",
"wikidata" : "https://www.wikidata.org/wiki/Q191352",
"free streaming" : "https://open.spotify.com/artist/

→˓6liAMWkVf5LH7YR9yfFy1Y",
"social network" : "https://www.facebook.com/portishead",
"lyrics" : "https://muzikum.eu/en/122-6105/portishead/lyrics.html"

},
"begin_year" : 1991,
"area" : "United Kingdom",
"type" : "Group"

}
]

}
}

Parameters

• recording_mbids (str) – A comma separated list of recording_mbids

1.1. ListenBrainz API 35

ListenBrainz Documentation, Release 0.1.0

• inc (str) – A space separated list of “artist”, “tag” and/or “release” to indicate which por-
tions of metadata you’re interested in fetching. We encourage users to only fetch the data
they plan to consume.

Status Codes

• 200 OK – you have data!

• 400 Bad Request – invalid recording_mbid arguments

GET /1/metadata/lookup/

This endpoint looks up mbid metadata for the given artist and recording name.

Parameters

• artist_name (str) – artist name of the listen

• recording_name – track name of the listen

• metadata (bool) – should extra metadata be also returned if a match is found, see /meta-
data/recording for details.

• inc (str) – same as /metadata/recording endpoint

Status Codes

• 200 OK – lookup succeeded, does not indicate whether a match was found or not

• 400 Bad Request – invalid arguments

POST /1/metadata/submit_manual_mapping/

Submit a manual mapping of a recording messybrainz ID to a musicbrainz recording id.

The format of the JSON to be POSTed to this endpoint is:

{
"recording_msid": "d23f4719-9212-49f0-ad08-ddbfbfc50d6f",
"recording_mbid": "8f3471b5-7e6a-48da-86a9-c1c07a0f47ae"

}

Request Headers

• Authorization – Token <user token>

• Content-Type – application/json

Status Codes

• 200 OK – Mapping added, or already exists.

• 400 Bad Request – invalid JSON sent, see error message for details.

• 401 Unauthorized – invalid authorization. See error message for details.

Response Headers

• Content-Type – application/json

GET /1/metadata/get_manual_mapping/

Get the manual mapping of a recording messybrainz ID that a user added.

Request Headers

• Authorization – Token <user token>

36 Chapter 1. Contents

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7235#section-4.2

ListenBrainz Documentation, Release 0.1.0

• Content-Type – application/json

Status Codes

• 200 OK – The response of the mapping.

• 404 Not Found – No such mapping for this user/recording msid

Response Headers

• Content-Type – application/json

Social

User Timeline API

These api endpoints allow to create and fetch timeline events for a user.

POST /1/user/(user_name)/timeline-event/create/recording
Make the user recommend a recording to their followers.

The request should post the following data about the recording being recommended:

{
"metadata": {

"artist_name": "<The name of the artist, required>",
"track_name": "<The name of the track, required>",
"recording_msid": "<The MessyBrainz ID of the recording, required>",
"release_name": "<The name of the release, optional>",
"recording_mbid": "<The MusicBrainz ID of the recording, optional>"

}
}

Parameters

• user_name (str) – The MusicBrainz ID of the user who is recommending the recording.

Request Headers

• Authorization – Token <user token>

• Content-Type – application/json

Status Codes

• 200 OK – Successful query, recording has been recommended!

• 400 Bad Request – Bad request, check response['error'] for more details.

• 401 Unauthorized – Unauthorized, you do not have permissions to recommend recordings
on the behalf of this user

• 404 Not Found – User not found

Response Headers

• Content-Type – application/json

1.1. ListenBrainz API 37

https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5

ListenBrainz Documentation, Release 0.1.0

POST /1/user/(user_name)/timeline-event/create/notification
Post a message with a link on a user’s timeline. Only approved users are allowed to perform this action.

The request should contain the following data:

{
"metadata": {

"message": "<the message to post, required>",
}

}

Parameters

• user_name (str) – The MusicBrainz ID of the user on whose timeline the message is to be
posted.

Status Codes

• 200 OK – Successful query, message has been posted!

• 400 Bad Request – Bad request, check response['error'] for more details.

• 403 Forbidden – Forbidden, you are not an approved user.

• 404 Not Found – User not found

Response Headers

• Content-Type – application/json

POST /1/user/(user_name)/timeline-event/create/review
Creates a CritiqueBrainz review event for the user. This also creates a corresponding review in CritiqueBrainz.
Users need to have linked their ListenBrainz account with CritiqueBrainz first to use this endpoint successfully.

The request should contain the following data:

{
"metadata": {

"message": "<the message to post, required>",
}

}

Parameters

• user_name (str) – The MusicBrainz ID of the user who is creating the review.

Status Codes

• 200 OK – Successful query, message has been posted!

• 400 Bad Request – Bad request, check response['error'] for more details.

• 403 Forbidden – Forbidden, you have not linked with a CritiqueBrainz account.

• 404 Not Found – User not found

Response Headers

• Content-Type – application/json

38 Chapter 1. Contents

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5

ListenBrainz Documentation, Release 0.1.0

GET /1/user/(user_name)/feed/events
Get feed events for a user’s timeline.

Parameters

• user_name (str) – The MusicBrainz ID of the user whose timeline is being requested.

• max_ts – If you specify a max_ts timestamp, events with timestamps less than the value
will be returned

• min_ts – If you specify a min_ts timestamp, events with timestamps greater than the value
will be returned

• count (int) – Optional, number of events to return. Default: DEFAULT_ITEMS_PER_GET .
Max: MAX_ITEMS_PER_GET

Request Headers

• Authorization – Token <user token>

• Content-Type – application/json

Status Codes

• 200 OK – Successful query, you have feed events!

• 400 Bad Request – Bad request, check response['error'] for more details.

• 401 Unauthorized – Unauthorized, you do not have permission to view this user’s feed.

• 404 Not Found – User not found

Response Headers

• Content-Type – application/json

POST /1/user/(user_name)/feed/events/delete
Delete those events from user’s feed that belong to them. Supports deletion of recommendation and notification.
Along with the authorization token, post the event type and event id. For example:

{
"event_type": "recording_recommendation",
"id": "<integer id of the event>"

}

{
"event_type": "notification",
"id": "<integer id of the event>"

}

Parameters

• user_name (str) – The MusicBrainz ID of the user from whose timeline events are being
deleted

Request Headers

• Authorization – Token <user token>

• Content-Type – application/json

Status Codes

• 200 OK – Successful deletion

1.1. ListenBrainz API 39

https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

ListenBrainz Documentation, Release 0.1.0

• 400 Bad Request – Bad request, check response['error'] for more details.

• 401 Unauthorized – Unauthorized

• 404 Not Found – User not found

• 500 Internal Server Error – API Internal Server Error

Response Headers

• Content-Type – application/json

POST /1/user/(user_name)/feed/events/hide
Hide events from the user feed, only recording_recommendation and recording_pin events that have been gener-
ated by the people one is following can be deleted via this endpoint. For example:

{
"event_type": "recording_recommendation",
"event_id": "<integer id of the event>"

}

{
"event_type": "recording_pin",
"event_id": "<integer id of the event>"

}

Parameters

• user_name (str) – The MusicBrainz ID of the user from whose timeline events are being
deleted

Request Headers

• Authorization – Token <user token>

• Content-Type – application/json

Status Codes

• 200 OK – Event hidden successfully

• 400 Bad Request – Bad request, check response['error'] for more details.

• 401 Unauthorized – Unauthorized

• 404 Not Found – User not found

• 500 Internal Server Error – API Internal Server Error

Response Headers

• Content-Type – application/json

POST /1/user/(user_name)/feed/events/unhide
Delete hidden events from the user feed, aka unhide events. For example:

{
"event_type": "recording_pin",
"event_id": "<integer id of the event>"

}

40 Chapter 1. Contents

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5

ListenBrainz Documentation, Release 0.1.0

Request Headers

• Authorization – Token <user token>

• Content-Type – application/json

Status Codes

• 200 OK – Event unhidden successfully

• 400 Bad Request – Bad request, check response['error'] for more details.

• 401 Unauthorized – Unauthorized

• 404 Not Found – User not found

• 500 Internal Server Error – API Internal Server Error

Response Headers

• Content-Type – application/json

POST /1/user/(user_name)/timeline-event/create/recommend-personal
Make the user recommend a recording to their followers. The request should post the following data about the
recording being recommended, and also the list of followers getting recommended:

{
"metadata": {

"artist_name": "<The name of the artist, required>",
"track_name": "<The name of the track, required>",
"recording_msid": "<The MessyBrainz ID of the recording, required>",
"release_name": "<The name of the release, optional>",
"recording_mbid": "<The MusicBrainz ID of the recording, optional>",
"users": [<usernames of the persons you want to recommend to, required>]
"blurb_content": "<String containing personalized recommendation>"

}
}

Request Headers

• Authorization – Token <user token>

• Content-Type – application/json

Status Codes

• 200 OK – Successful query, recording has been recommended!

• 400 Bad Request – Bad request, check response['error'] for more

details. :statuscode 401: Unauthorized, you do not have permissions to recommend personal recordings on the
behalf of this user :statuscode 404: User not found :resheader Content-Type: application/json

1.1. ListenBrainz API 41

https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

ListenBrainz Documentation, Release 0.1.0

Follow API

These apis allow to interact with follow user feature of ListenBrainz.

GET /1/user/(user_name)/followers
Fetch the list of followers of the user user_name. Returns a JSON with an array of user names like these:

{
"followers": ["rob", "mr_monkey", "..."],
"user": "shivam-kapila"

}

Status Codes

• 200 OK – Yay, you have data!

• 404 Not Found – User not found

GET /1/user/(user_name)/following
Fetch the list of users followed by the user user_name. Returns a JSON with an array of user names like these:

{
"followers": ["rob", "mr_monkey", "..."],
"user": "shivam-kapila"

}

Status Codes

• 200 OK – Yay, you have data!

• 404 Not Found – User not found

POST /1/user/(user_name)/follow
Follow the user user_name. A user token (found on https://listenbrainz.org/profile/) must be provided in the
Authorization header!

Request Headers

• Authorization – Token <user token>

• Content-Type – application/json

Status Codes

• 200 OK – Successfully followed the user user_name.

• 400 Bad Request –

– Already following the user user_name.

– Trying to follow yourself.

• 401 Unauthorized – invalid authorization. See error message for details.

Response Headers

• Content-Type – application/json

42 Chapter 1. Contents

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://listenbrainz.org/profile/
https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5

ListenBrainz Documentation, Release 0.1.0

POST /1/user/(user_name)/unfollow
Unfollow the user user_name. A user token (found on https://listenbrainz.org/profile/) must be provided in the
Authorization header!

Request Headers

• Authorization – Token <user token>

• Content-Type – application/json

Status Codes

• 200 OK – Successfully unfollowed the user user_name.

• 401 Unauthorized – invalid authorization. See error message for details.

Response Headers

• Content-Type – application/json

Recommendations

ListenBrainz uses collaborative filtering to generate recording recommendations, which may be further processed to
generate playlists for users.

Recording Recommendation API

These api endpoints allow to fetch the raw collaborative filtered recording IDs.

GET /1/cf/recommendation/user/(user_name)/recording
Get recommendations sorted on rating and ratings for user user_name.

A sample response from the endpoint may look like:

{
"payload": {

"last_updated": 1588494361,
"type": "<artist_type>",
"entity": "recording",
"mbids": [

{
"recording_mbid": "526bd613-fddd-4bd6-9137-ab709ac74cab",
"score": 9.345

},
{

"recording_mbid": "a6081bc1-2a76-4984-b21f-38bc3dcca3a5",
"score": 6.998

}
],
"user_name": "unclejohn69",
"count": 10,
"total_mbid_count": 30,
"offset": 10

}
}

1.1. ListenBrainz API 43

https://listenbrainz.org/profile/
https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5

ListenBrainz Documentation, Release 0.1.0

Note:

• This endpoint is experimental and probably will change in the future.

• <artist_type>: ‘top’ or ‘similar’ or ‘raw’

Parameters

• artist_type (str) – Mandatory, artist type in [‘top’, ‘similar’, ‘raw’]

Ex. artist_type = top will fetch recommended recording mbids that belong to top artists
listened to by the user.

artist_type = similar will fetch recommended recording mbids that belong to artists similar
to top artists listened to by the user.

artist_type = raw will fetch recommended recording mbids based on the training data fed to
the CF model.

• count (int) – Optional, number of recording mbids to return, Default:
DEFAULT_ITEMS_PER_GET Max: MAX_ITEMS_PER_GET

• offset (int) – Optional, number of mbids to skip from the beginning, for pagination. Ex.
An offset of 5 means the 5 mbids will be skipped, defaults to 0

Status Codes

• 200 OK – Successful query, you have data!

• 400 Bad Request – Bad request, check response['error'] for more details

• 404 Not Found – User not found.

• 204 No Content – Recommendations for the user haven’t been generated, empty response
will be returned

Recording Recommendation Feedback API

These api endpoints allow to submit and retrieve feedback for raw collaborative filtered recordings.

POST /1/recommendation/feedback/submit

Submit recommendation feedback. A user token (found on https://listenbrainz.org/profile/) must be provided in
the Authorization header! Each request should contain only one feedback in the payload.

A sample feedback may look like:

{
"recording_mbid": "d23f4719-9212-49f0-ad08-ddbfbfc50d6f",
"rating": "love"

}

Request Headers

• Authorization – Token <user token>

Status Codes

• 200 OK – feedback accepted.

• 400 Bad Request – invalid JSON sent, see error message for details.

44 Chapter 1. Contents

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://listenbrainz.org/profile/
https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

ListenBrainz Documentation, Release 0.1.0

• 401 Unauthorized – invalid authorization. See error message for details.

Response Headers

• Content-Type – application/json

POST /1/recommendation/feedback/delete

Delete feedback for a user. A user token (found on https://listenbrainz.org/profile/) must be provided in the
Authorization header! Each request should contain only one recording mbid in the payload. A sample feedback
may look like:

{
"recording_mbid": "d23f4719-9212-49f0-ad08-ddbfbfc50d6f",

}

Request Headers

• Authorization – Token <user token>

Status Codes

• 200 OK – feedback deleted.

• 400 Bad Request – invalid JSON sent, see error message for details.

• 401 Unauthorized – invalid authorization. See error message for details.

Response Headers

• Content-Type – application/json

GET /1/recommendation/feedback/user/(user_name)
Get feedback given by user user_name.

A sample response may look like:

{
"count": 1,
"feedback": [

{
"created": "1345679998",
"recording_mbid": "d23f4719-9212-49f0-ad08-ddbfbfc50d6f",
"rating": "love"

},
"-- more feedback data here ---"

],
"offset": 0,
"total_count": 1,
"user_name": "Vansika"

}

If the optional argument rating is not given, this endpoint will return all the feedback submitted by the user.
Otherwise filters the feedback to be returned by rating.

Parameters

• rating (str) – Optional, refer to db/model/recommendation_feedback.py for allowed rating
values.

1.1. ListenBrainz API 45

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://listenbrainz.org/profile/
https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5

ListenBrainz Documentation, Release 0.1.0

• count (int) – Optional, number of feedback items to return, Default:
DEFAULT_ITEMS_PER_GET Max: MAX_ITEMS_PER_GET.

• offset (int) – Optional, number of feedback items to skip from the beginning, for pagina-
tion. Ex. An offset of 5 means the top 5 feedback will be skipped, defaults to 0.

Status Codes

• 200 OK – Yay, you have data!

• 404 Not Found – User not found.

• 400 Bad Request – Bad request, check response['error'] for more details

Response Headers

• Content-Type – application/json

GET /1/recommendation/feedback/user/(user_name)/recordings
Get feedback given by user user_name for the list of recordings supplied.

A sample response may look like:

{
"feedback": [

{
"created": 1604033691,
"rating": "bad_recommendation",
"recording_mbid": "9ffabbe4-e078-4906-80a7-3a02b537e251"

},
{

"created": 1604032934,
"rating": "hate",
"recording_mbid": "28111d2c-a80d-418f-8b77-6aba58abe3e7"

}
],
"user_name": "Vansika Pareek"

}

An empty response will be returned if the feedback for given recording MBID doesn’t exist.

Parameters

• mbids (str) – comma separated list of recording_mbids for which feedback records are to
be fetched.

Status Codes

• 200 OK – Yay, you have data!

• 400 Bad Request – Bad request, check response['error'] for more details.

• 404 Not Found – User not found.

Response Headers

• Content-Type – application/json

46 Chapter 1. Contents

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5

ListenBrainz Documentation, Release 0.1.0

Art

ListenBrainz has a (cover) art infrastructure that creates new cover art from a user’s statistics or a user’s instructions
on how to composite a cover art grid.

As these endpoints return SVGs rather than images, you must embed them in an html <object
data="covert_art_url" type="image/svg+xml"> element rather than an
element. Otherwise external resources such as cover art images and fonts will not be loaded and the result will be
useless.

See https://developer.mozilla.org/en-US/docs/Web/HTML/Element/object for reference.

POST /1/art/grid/

Create a cover art grid SVG file from the POSTed JSON data to this endpoint. The JSON data should look like
the following:

{
"background": "transparent",
"image_size": 750,
"dimension": 4,
"skip-missing": false,
"show-caa": false,
"tiles": [

"0,1,4,5",
"10,11,14,15",
"2",
"3",
"6",
"7",
"8",
"9",
"12",
"13"

],
"release_mbids": [

"d101e395-0c04-4237-a3d2-167b1d88056c",
"4211382c-39e8-4a72-a32d-e4046fd96356",
"6d895dfa-8688-4867-9730-2b98050dae04",
"773e54bb-3f43-4813-826c-ca762bfa8318",
"ec782dbe-9204-4ec3-bf50-576c7cf3dfb3",
"10dffffc-c2aa-4ddd-81fd-42b5e125f240",
"be5f714d-02eb-4c89-9a06-5e544f132604",
"3eee4ed1-b48e-4894-8a05-f535f16a4985"

]
}

Parameters

• background (str) – The background for the cover art: Must be “transparent”, “white” or
“black”.

• image_size (int) – The size of the cover art image. See constants at the bottom of this
document.

• dimension (int) – The dimension to use for this grid. A grid of dimension 3 has 3 images
across and 3 images down, for a total of 9 images.

1.1. ListenBrainz API 47

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/object

ListenBrainz Documentation, Release 0.1.0

• skip-missing (bool) – If cover art is missing for a given release_mbid, skip it and move
on to the next one, if true is passed. If false, the show-caa option will decide what happens.

• show-caa (bool) – If cover art is missing and skip-missing is false, then show-caa will
determine if a blank square is shown or if the Cover Art Archive missing image is show.

one, if true is passed. If false, the show-caa option will decide what happens.

• tiles (list) – The tiles paramater is a list of strings that determines the location where
cover art images should be placed. Each string is a comma separated list of image cells. A
grid of dimension 3 has 9 cells, from 0 in the upper left hand corner, 2 in the upper right
hand corner, 6 in the lower left corner and 8 in the lower right corner. Specifying only a
single cell will have the image cover that cell exactly. If more than one cell is specified, the
image will cover the area defined by the bounding box of all the given cells. These tiles only
define bounding box areas – no clipping of images that may fall outside of these tiles will be
performed.

• release_mbids (list) – An ordered list of release_mbids. The images will be loaded and
processed in the order that this list is in. The cover art for the release_mbids will be placed
on the tiles defined by the tiles parameter.

Status Codes

• 200 OK – cover art created successfully.

• 400 Bad Request – Invalid JSON or invalid options in JSON passed. See error message for
details.

Response Headers

• Content-Type – image/svg+xml

See the bottom of this document for constants relating to this method.

GET /1/art/grid-stats/(user_name)/
time_range/int: dimension/int: layout/int: image_size
Create a cover art grid SVG file from the stats of a given user.

Parameters

• user_name (str) – The name of the user for whom to create the cover art.

• time_range (str) – Must be a statistics time range – see below.

• dimension (int) – The dimension to use for this grid. A grid of dimension 3 has 3 images
across and 3 images down, for a total of 9 images.

• layout (int) – The layout to be used for this grid. Layout 0 is always a simple grid, but
other layouts may have image images be of different sizes. See https://art.listenbrainz.org for
examples of the available layouts.

• image_size (int) – The size of the cover art image. See constants at the bottom of this
document.

Status Codes

• 200 OK – cover art created successfully.

• 400 Bad Request – Invalid JSON or invalid options in JSON passed. See error message for
details.

Response Headers

• Content-Type – image/svg+xml

48 Chapter 1. Contents

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://art.listenbrainz.org
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5

ListenBrainz Documentation, Release 0.1.0

See the bottom of this document for constants relating to this method.

GET /1/art/(custom_name)/
user_name/time_range/int: image_size
Create a custom cover art SVG file from the stats of a given user.

Parameters

• cover_name (str) – The name of cover art to be generated. See https://art.listenbrainz.org
for the different types that are available.

• user_name (str) – The name of the user for whom to create the cover art.

• time_range (str) – Must be a statistics time range – see below.

• image_size (int) – The size of the cover art image. See constants at the bottom of this
document.

Status Codes

• 200 OK – cover art created successfully.

• 400 Bad Request – Invalid JSON or invalid options in JSON passed. See error message for
details.

Response Headers

• Content-Type – image/svg+xml

See the bottom of this document for constants relating to this method.

GET /1/art/year-in-music/2022/(user_name)
Create the shareable svg image using YIM 2022 stats

Constants

Constants that are relevant to using the API:

listenbrainz.art.cover_art_generator.MIN_IMAGE_SIZE = 128

Minimum image size

listenbrainz.art.cover_art_generator.MAX_IMAGE_SIZE = 1024

Maximum image size

listenbrainz.art.cover_art_generator.MIN_DIMENSION = 2

Minimum dimension

listenbrainz.art.cover_art_generator.MAX_DIMENSION = 5

Maximum dimension

data.model.common_stat.ALLOWED_STATISTICS_RANGE = ['week', 'month', 'quarter',
'half_yearly', 'year', 'all_time', 'this_week', 'this_month', 'this_year']

list of allowed value for range param accepted by various statistics endpoints

1.1. ListenBrainz API 49

https://art.listenbrainz.org
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5

ListenBrainz Documentation, Release 0.1.0

Miscellaneous

Various ListenBrainz API endpoints that are not documented elsewhere.

Explore API

These API endpoints allow fetching fresh releases and cover art details for a given color.

GET /1/explore/fresh-releases/

This endpoint fetches upcoming and recently released (fresh) releases and returns a list of:

{
"artist_credit_name": "Röyksopp",
"artist_mbids": [
"1c70a3fc-fa3c-4be1-8b55-c3192db8a884"

],
"release_date": "2022-04-29",
"release_group_mbid": "4f1c579a-8a9c-4f96-92ae-befcdf3e0d32",
"release_group_primary_type": "Album",
"release_mbid": "1f1db316-8361-4a40-9633-550b259642f5",
"release_name": "Profound Mysteries"

}

Parameters

• release_date – Fresh releases will be shown around this pivot date. Must be in YYYY-
MM-DD format

• days – The number of days of fresh releases to show. Max 30 days.

Status Codes

• 200 OK – fetch succeeded

• 400 Bad Request – invalid date or number of days passed.

Response Headers

• Content-Type – application/json

GET /1/explore/color/(color)
Fetch a list of releases that have cover art that has a predominant color that is close to the given color.

{
"payload": {

"releases" : [
{
"artist_name": "Letherette",
"color": [250, 90, 192],
"dist": 109.973,
"release_mbid": "00a109da-400c-4350-9751-6e6f25e89073",
"caa_id": 34897349734,
"release_name": "EP5",
"recordings": "< array of listen formatted metadata >",
},

(continues on next page)

50 Chapter 1. Contents

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5

ListenBrainz Documentation, Release 0.1.0

(continued from previous page)

". . ."
]

}
}

Status Codes

• 200 OK – success

Response Headers

• Content-Type – application/json

Status API

GET /1/status/get-dump-info

Get information about ListenBrainz data dumps. You need to pass the id parameter in a GET request to get data
about that particular dump.

Example response:

{
"id": 1,
"timestamp": "20190625-165900"

}

Query Parameters

• id – Integer specifying the ID of the dump, if not provided, the endpoint returns information
about the latest data dump.

Status Codes

• 200 OK – You have data.

• 400 Bad Request – You did not provide a valid dump ID. See error message for details.

• 404 Not Found – Dump with given ID does not exist.

Response Headers

• Content-Type – application/json

1.1.2 Rate limiting

The ListenBrainz API is rate limited via the use of rate limiting headers that are sent as part of the HTTP response
headers. Each call will include the following headers:

• X-RateLimit-Limit: Number of requests allowed in given time window

• X-RateLimit-Remaining: Number of requests remaining in current time window

• X-RateLimit-Reset-In: Number of seconds when current time window expires (recommended: this header is
resilient against clients with incorrect clocks)

• X-RateLimit-Reset: UNIX epoch number of seconds (without timezone) when current time window expires1

1 Provided for compatibility with other APIs, but we still recommend using X-RateLimit-Reset-In wherever possible

1.1. ListenBrainz API 51

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5

ListenBrainz Documentation, Release 0.1.0

Rate limiting is automatic and the client must use these headers to determine the rate to make API calls. If the client
exceeds the number of requests allowed, the server will respond with error code 429: Too Many Requests. Re-
quests that provide the Authorization header with a valid user token may receive higher rate limits than those without
valid user tokens.

1.2 Usage Examples

Note: These examples are written in Python version 3.6.3 and use requests version 2.18.4.

1.2.1 Prerequisites

All the examples assume you have a development version of the ListenBrainz server set up on localhost. Remember
to set DEBUG to True in the config. When in production, you can replace localhost with api.listenbrainz.org
to use the real API. In order to use either one, you’ll need a token. You can find it under ROOT/profile/ when signed
in, with ROOT being either localhost for the dev version or listenbrainz.org for the real API.

Caution: You should use the token from the API you’re using. In production, change the token to one from
listenbrainz.org.

1.2.2 Examples

Submitting Listens

See JSON Documentation for details on the format of the Track dictionaries.

If everything goes well, the json response should be {"status": "ok"}, and you should see a recent listen of “Never
Gonna Give You Up” when you visit ROOT/user/{your-user-name}.

from time import time
import requests

ROOT = '127.0.0.1'

def submit_listen(listen_type, payload, token):
"""Submits listens for the track(s) in payload.

Args:
listen_type (str): either of 'single', 'import' or 'playing_now'
payload: A list of Track dictionaries.
token: the auth token of the user you're submitting listens for

Returns:
The json response if there's an OK status.

Raises:
An HTTPError if there's a failure.
A ValueError is the JSON in the response is invalid.

(continues on next page)

52 Chapter 1. Contents

http://docs.python-requests.org/en/master/

ListenBrainz Documentation, Release 0.1.0

(continued from previous page)

"""

response = requests.post(
url="http://{0}/1/submit-listens".format(ROOT),
json={

"listen_type": listen_type,
"payload": payload,

},
headers={

"Authorization": "Token {0}".format(token)
}

)

response.raise_for_status()

return response.json()

if __name__ == "__main__":
EXAMPLE_PAYLOAD = [

{
An example track.
"listened_at": int(time()),
"track_metadata": {

"additional_info": {
"release_mbid": "bf9e91ea-8029-4a04-a26a-224e00a83266",
"artist_mbids": [

"db92a151-1ac2-438b-bc43-b82e149ddd50"
],
"recording_mbid": "98255a8c-017a-4bc7-8dd6-1fa36124572b",
"tags": ["you", "just", "got", "semi", "rick", "rolled"]

},
"artist_name": "Rick Astley",
"track_name": "Never Gonna Give You Up",
"release_name": "Whenever you need somebody"

}
}

]

Input token from the user and call submit listen
token = input('Please enter your auth token: ')
json_response = submit_listen(listen_type='single', payload=EXAMPLE_PAYLOAD,␣

→˓token=token)

print("Response was: {0}".format(json_response))
print("Check your listens - there should be a Never Gonna Give You Up track, played␣

→˓recently.")

1.2. Usage Examples 53

ListenBrainz Documentation, Release 0.1.0

Getting Listen History

See JSON Documentation for details on the format of the Track dictionaries.

If there’s nothing in the listen history of your user, you can run submit_listens before this.

If there is some listen history, you should see a list of tracks like this:

import requests

ROOT = '127.0.0.1'
The following token must be valid, but it doesn't have to be the token of the user you
→˓'re
trying to get the listen history of.
TOKEN = 'YOUR_TOKEN_HERE'
AUTH_HEADER = {

"Authorization": "Token {0}".format(TOKEN)
}

def get_listens(username, min_ts=None, max_ts=None, count=None):
"""Gets the listen history of a given user.

Args:
username: User to get listen history of.
min_ts: History before this timestamp will not be returned.

DO NOT USE WITH max_ts.
max_ts: History after this timestamp will not be returned.

DO NOT USE WITH min_ts.
count: How many listens to return. If not specified,

uses a default from the server.

Returns:
A list of listen info dictionaries if there's an OK status.

Raises:
An HTTPError if there's a failure.
A ValueError if the JSON in the response is invalid.
An IndexError if the JSON is not structured as expected.

"""
response = requests.get(

url="http://{0}/1/user/{1}/listens".format(ROOT, username),
params={

"min_ts": min_ts,
"max_ts": max_ts,
"count": count,

},
Note that an authorization header isn't compulsary for requests to get listens
BUT requests with authorization headers are given relaxed rate limits by␣

→˓ListenBrainz
headers=AUTH_HEADER,

)

response.raise_for_status()
(continues on next page)

54 Chapter 1. Contents

ListenBrainz Documentation, Release 0.1.0

(continued from previous page)

return response.json()['payload']['listens']

if __name__ == "__main__":
username = input('Please input the MusicBrainz ID of the user: ')
listens = get_listens(username)

for track in listens:
print("Track: {0}, listened at {1}".format(track["track_metadata"]["track_name"],

track["listened_at"]))

Track: Never Gonna Give You Up, listened at 1512040365
Track: Never Gonna Give You Up, listened at 1511977429
Track: Never Gonna Give You Up, listened at 1511968583
Track: Never Gonna Give You Up, listened at 1443521965
Track: Never Gonna Give You Up, listened at 42042042

Lookup MBIDs

To interact with various ListenBrainz features, you will often need a MBID of the recording of a listen. You can use
the Metadata endpoints to lookup MBID and additional metadata for the listen using its track name and artist name.
For instance,

#!/usr/bin/env python3

import json
import requests

def lookup_metadata(track_name: str, artist_name: str, incs: str) -> dict:
"""Looks up the metadata for a listen using track name and artist name."""
params = {

"recording_name": track_name,
"artist_name": artist_name

}
if incs:

params["metadata"] = True
params["incs"] = incs

response = requests.get(
url="https://api.listenbrainz.org/1/metadata/lookup/",
params=params

)
response.raise_for_status()
return response.json()

if __name__ == "__main__":
track_name = input('Please input the track name of the listen: ').strip()
artist_name = input('Please input the artist name of the listen: ').strip()
incs = input('Please input extra metadata to include (leave empty if not desired):

→˓').strip()
(continues on next page)

1.2. Usage Examples 55

ListenBrainz Documentation, Release 0.1.0

(continued from previous page)

metadata = lookup_metadata(track_name, artist_name, incs)

print()
if metadata:

print("Metadata found.")
print(json.dumps(metadata, indent=4))

else:
print("No metadata found.")

Please provide the prompted data to the script to lookup the given track. Currently the release argument for a listen is
not used, but we plan to support in the near future, so we encourage you to start sending release information if you have
it.

{
"artist_credit_name": "Ariana Grande",
"artist_mbids": [

"f4fdbb4c-e4b7-47a0-b83b-d91bbfcfa387"
],
"metadata": {

"recording": {
"rels": [

{
"artist_mbid": "eb811bf7-4c99-4781-84c0-10ba6b8e33b3",
"artist_name": "Carl Falk",
"instrument": "guitar",
"type": "instrument"

},
{

"artist_mbid": "c8af4490-e48a-4f91-aef9-2b1e39369576",
"artist_name": "Savan Kotecha",
"instrument": "background vocals",
"type": "vocal"

},
{

"artist_mbid": "0d33cc88-28ae-44d5-be7e-7a653e518720",
"artist_name": "Jeanette Olsson",
"instrument": "background vocals",
"type": "vocal"

}
]

}
},
"recording_mbid": "9f24c0f7-a644-4074-8fbd-a1dba03de129",
"recording_name": "One Last Time",
"release_mbid": "be5d97b1-408a-4e95-b924-0a61955048de",
"release_name": "My Everything"

}

56 Chapter 1. Contents

ListenBrainz Documentation, Release 0.1.0

Love/hate feedback

To provide love/hate feedback on listens, you need a recording mbid. If you do not have a recording mbid, you can
look it up using the metadata endpoints. See Lookup MBIDs for an example of the same. Here is an example of how
to submit love/hate feedback using the ListenBrainz API. Refer to Feedback API for more details.

#!/usr/bin/env python3

import requests

def submit_feedback(token: str, recording_mbid: str, score: int):
""" Submit feedback for recording. """
response = requests.post(

url="https://api.listenbrainz.org/1/feedback/recording-feedback",
json={"recording_mbid": recording_mbid, "score": score},
headers={"Authorization": f"Token {token}"}

)
response.raise_for_status()
print("Feedback submitted.")

if __name__ == "__main__":
recording_mbid = input('Please input the recording mbid of the listen: ').strip()
score = int(input('Please input the feedback score (1, 0 or -1): ').strip())
token = input('Please enter your auth token: ').strip()

submit_feedback(token, recording_mbid, score)

Please provide the prompted data to the script to submit feedback.

Latest Import

Set and get the timestamp of the latest import into ListenBrainz.

Setting

from time import time
import requests

ROOT = '127.0.0.1'

def set_latest_import(timestamp, token, service="lastfm"):
"""Sets the time of the latest import.

Args:
timestamp: Unix epoch to set latest import to.
token: the auth token of the user you're setting latest_import of
service: service to set latest import time of.

Returns:
(continues on next page)

1.2. Usage Examples 57

ListenBrainz Documentation, Release 0.1.0

(continued from previous page)

The JSON response if there's an OK status.

Raises:
An HTTPError if there's a failure.
A ValueError if the JSON response is invalid.

"""
response = requests.post(

url="http://{0}/1/latest-import".format(ROOT),
json={

"ts": timestamp,
"service": service

},
headers={

"Authorization": "Token {0}".format(token),
}

)

response.raise_for_status()

return response.json()

if __name__ == "__main__":
ts = int(time())
token = input('Please enter your auth token: ')
json_response = set_latest_import(ts, token)

print("Response was: {0}".format(json_response))
print("Set latest import time to {0}.".format(ts))

Getting

If your user has never imported before and the latest import has never been set by a script, then the server will return 0
by default. Run set_latest_import before this if you don’t want to actually import any data.

import requests

ROOT = '127.0.0.1'
The token can be any valid token.
TOKEN = 'YOUR_TOKEN_HERE'
AUTH_HEADER = {

"Authorization": "Token {0}".format(TOKEN)
}

def get_latest_import(username, service="lastfm"):
"""Gets the latest import timestamp of a given user.

Args:
username: User to get latest import time of.
service: service to get latest import time of.

Returns:
(continues on next page)

58 Chapter 1. Contents

ListenBrainz Documentation, Release 0.1.0

(continued from previous page)

A Unix timestamp if there's an OK status.

Raises:
An HTTPError if there's a failure.
A ValueError if the JSON in the response is invalid.
An IndexError if the JSON is not structured as expected.

"""
response = requests.get(

url="http://{0}/1/latest-import".format(ROOT),
params={

"user_name": username,
"service": service

},
headers=AUTH_HEADER,

)

response.raise_for_status()
return response.json()["latest_import"]

if __name__ == "__main__":
username = input('Please input the MusicBrainz ID of the user: ')
timestamp = get_latest_import(username)

print("User {0} last imported on {1}".format(username, timestamp))

You should see output like this:

User naiveaiguy last imported on 30 11 2017 at 12:23

1.3 JSON Documentation

Note: Do not submit copyrighted information in these fields!

1.3.1 Submission JSON

To submit a listen via our API (see: Core), POST a JSON document to the submit-listens endpoint. Submit one of
three types JSON documents:

• single: Submit single listen

– Indicates user just finished listening to track

– payload should contain information about exactly one track

• playing_now: Submit playing_now notification

– Indicates that user just began listening to track

– payload should contain information about exactly one track

1.3. JSON Documentation 59

ListenBrainz Documentation, Release 0.1.0

– Submitting playing_now documents is optional

– Timestamp must be omitted from a playing_now submission.

Note: Playing Now listens are only stored temporarily. A playing now listen must be submitted again as a single or
import for permanent storage.

• import: Submit previously saved listens

– payload should contain information about at least one track

– submitting multiple listens in one request is permitted. There are some limitations on the size of a sub-
mission. A request must be less than MAX_LISTEN_PAYLOAD_SIZE bytes, and you can only submit up to
MAX_LISTENS_PER_REQUEST listens per request. Each listen may not exceed MAX_LISTEN_SIZE bytes in
size

The listen_type element defines different types of submissions. The element is placed at the top-most level of the
JSON document. The only other required element is the payload element. This provides an array of listens – the
payload may be one or more listens (as designated by listen_type):

{
"listen_type": "single",
"payload": [

"--- listen data here ---"
]

}

A sample listen payload may look like:

{
"listened_at": 1443521965,
"track_metadata": {
"additional_info": {
"release_mbid": "bf9e91ea-8029-4a04-a26a-224e00a83266",
"artist_mbids": [
"db92a151-1ac2-438b-bc43-b82e149ddd50"

],
"recording_mbid": "98255a8c-017a-4bc7-8dd6-1fa36124572b",
"tags": ["you", "just", "got", "rick rolled!"]

},
"artist_name": "Rick Astley",
"track_name": "Never Gonna Give You Up",
"release_name": "Whenever you need somebody"

}
}

A complete submit listen JSON document may look like:

{
"listen_type": "single",
"payload": [

{
"listened_at": 1443521965,
"track_metadata": {
"additional_info": {

(continues on next page)

60 Chapter 1. Contents

ListenBrainz Documentation, Release 0.1.0

(continued from previous page)

"media_player": "Rhythmbox",
"submission_client": "Rhythmbox ListenBrainz Plugin",
"submission_client_version": "1.0",
"release_mbid": "bf9e91ea-8029-4a04-a26a-224e00a83266",
"artist_mbids": [
"db92a151-1ac2-438b-bc43-b82e149ddd50"

],
"recording_mbid": "98255a8c-017a-4bc7-8dd6-1fa36124572b",
"tags": ["you", "just", "got", "rick rolled!"],
"duration_ms": 222000

},
"artist_name": "Rick Astley",
"track_name": "Never Gonna Give You Up",
"release_name": "Whenever you need somebody"

}
}

]
}

1.3.2 Fetching listen JSON

The JSON documents returned from our API look like the following:

{
"payload": {
"count": 25,
"user_id": "-- the MusicBrainz ID of the user --",
"listens": [

"-- listen data here ---"
]

}
}

The number of listens in the document are returned by the top-level count element. The user_id element contains
the MusicBrainz ID of the user whose listens are being returned. The other element is the listens element. This is a
list which contains the listen JSON elements (described above).

The JSON document returned by the API endpoint for getting tracks being played right now is the same as above, except
that it also contains the payload/playing_now element as a boolean set to True.

1.3.3 Payload JSON details

A minimal payload must include track_metadata/artist_name and track_metadata/track_name elements:

{
"track_metadata": {
"artist_name": "Rick Astley",
"track_name": "Never Gonna Give You Up",

}
}

1.3. JSON Documentation 61

ListenBrainz Documentation, Release 0.1.0

artist_name and track_name elements must be simple strings.

The payload should also include the listened_at element, which must be an integer representing the Unix time when
the track was listened to. The minimum accepted value for this field is LISTEN_MINIMUM_TS. playing_now requests
should not have a listened_at field

Add additional metadata you may have for a track to the additional_info element. Any additional information allows
us to better correlate your listen data to existing MusicBrainz-based data. If you have MusicBrainz IDs available, submit
them!

The following optional elements may also be included in the track_metadata element:

element data type description
release_name string the name of the release this recording was played from.

The following optional elements may also be included in the additional_info element.

Note: If you do not have the data for any of the following fields, omit the key entirely:

62 Chapter 1. Contents

ListenBrainz Documentation, Release 0.1.0

Table 1: Additional Info Fields
element data type description
artist_mbids array of

strings
A list of MusicBrainz Artist IDs, one or more Artist IDs may
be included here. If you have a complete MusicBrainz artist
credit that contains multiple Artist IDs, include them all in
this list.

release_group_mbid string A MusicBrainz Release Group ID of the release group this
recording was played from.

release_mbid string A MusicBrainz Release ID of the release this recording was
played from.

recording_mbid string A MusicBrainz Recording ID of the recording that was
played.

track_mbid string A MusicBrainz Track ID associated with the recording that
was played.

work_mbids array of
strings

A list of MusicBrainz Work IDs that may be associated with
this recording.

tracknumber integer The tracknumber of the recording. This first recording on a
release is tracknumber 1.

isrc string The ISRC code associated with the recording.
spotify_id string The Spotify track URL associated with this

recording. e.g.: http://open.spotify.com/track/
1rrgWMXGCGHru5bIRxGFV0

tags array of
string

A list of user-defined folksonomy tags to be associated
with this recording. For example, you have apply tags
such as punk, see-live, smelly. You may submit up to
MAX_TAGS_PER_LISTEN tags and each tag may be up to
MAX_TAG_SIZE characters large.

media_player string The name of the program being used to listen to music.
Don’t include a version number here.

media_player_version string The version of the program being used to listen to music.
submission_client string The name of the client that is being used to submit lis-

tens to ListenBrainz. If the media player has the ability to
submit listens built-in then this value may be the same as
media_player. Don’t include a version number here.

submission_client_version string The version of the submission client.
music_service string If the song being listened to comes from an online service,

the canonical domain of this service (see below for more de-
tails).

music_service_name string If the song being listened to comes from an online service
and you don’t know the canonical domain, a name that rep-
resents the service.

origin_url string If the song of this listen comes from an online source, the
URL to the place where it is available. This could be a spo-
tify url (see spotify_id), a YouTube video URL, a Sound-
cloud recording page URL, or the full URL to a public MP3
file. If there is a webpage for this song (e.g. Youtube page,
Soundcloud page) do not try and resolve the URL to an ac-
tual audio resource.

duration_ms and duration integer The duration of the track in milliseconds and seconds re-
spectively. You should only include one of duration_ms
or duration.

1.3. JSON Documentation 63

http://open.spotify.com/track/1rrgWMXGCGHru5bIRxGFV0
http://open.spotify.com/track/1rrgWMXGCGHru5bIRxGFV0

ListenBrainz Documentation, Release 0.1.0

Note: Music service names

The music_service field should be a domain name rather than a textual description or URL. This allows us to refer
unambiguously to a service without worrying about capitalization or full/short names (such as the difference between
“Internet Archive”, “The Internet Archive” or “Archive”). If we use this data on ListenBrainz, we will perform a map-
ping from the domain name to a canonical name. Below is an example of mappings that we currently support. If you are
submitting from a service which doesn’t appear in this list, you should determine a canonical domain from the domain of
the service. Only if you cannot determine a domain for the service should you use the text-only music_service_name
field.

Table 2: Music services domain/name mapping
domain name
spotify.com Spotify
bandcamp.com Bandcamp
youtube.com YouTube
music.youtube.com YouTube Music
deezer.com Deezer
tidal.com TIDAL
music.apple.com Apple Music
archive.org Internet Archive
soundcloud.com Soudcloud
jamendo.com Jamendo Music
play.google.com Google Play Music

1.3.4 Client Metadata examples

Here are a few examples of how to fill in the media_player, submission_client and music_service fields based
on our current recommendations.

BrainzPlayer on the ListenBrainz website playing a video from YouTube

{
"track_metadata": {

"additional_info": {
"media_player": "BrainzPlayer",
"music_service": "youtube.com",
"origin_url": "https://www.youtube.com/watch?v=JKFBiaoFHoY",
"submission_client": "BrainzPlayer"

},
"artist_name": "Mdou Moctar",
"release_name": "Ilana (The Creator)",
"track_name": "Inizgam"

}
}

64 Chapter 1. Contents

ListenBrainz Documentation, Release 0.1.0

BrainzPlayer on the ListenBrainz website playing a video from Spotify

Note that even though the origin_url is https://open.spotify.com, we set music_service to spotify.com (see
above note).

{
"track_metadata": {

"additional_info": {
"media_player": "BrainzPlayer",
"music_service": "spotify.com",
"origin_url": "https://open.spotify.com/track/5fEjp2F0Sqr9fMuLSaDqz0",
"submission_client": "BrainzPlayer"

},
"artist_name": "Les Filles de Illighadad",
"release_name": "Eghass Malan",
"track_name": "Inssegh Inssegh"

}
}

Using Otter for Funkwhale on android, and submitting with Simple Scrobbler

In this case, the media player and submission client are completely separate programs. Because music is being played
from a user’s private collection and not a streaming service, don’t include music_service or origin_url.

{
"track_metadata": {

"additional_info": {
"media_player": "Otter",
"media_player_version": "1.0.21",
"submission_client": "Simple Scrobbler"
"submission_client_version": "1.7.0"

},
"artist_name": "Les Filles de Illighadad",
"release_name": "Eghass Malan",
"track_name": "Inssegh Inssegh"

}
}

Rhythmbox player listening to Jamendo

{
"track_metadata": {

"additional_info": {
"media_player": "Rhythmbox",
"music_service": "jamendo.com",
"music_service_name": "Jamendo Music"
"origin_url": "https://www.jamendo.com/track/1466090/universal-funk",
"submission_client": "Rhythmbox ListenBrainz Plugin"

},
"artist_name": "Duo Teslar",
"track_name": "Universal Funk"

(continues on next page)

1.3. JSON Documentation 65

ListenBrainz Documentation, Release 0.1.0

(continued from previous page)

}
}

Listening to a recording from Bandcamp and submitting with the browser extension WebScrobbler

Because playback happens in the browser, there is no specific media_player.

{
"track_metadata": {

"additional_info": {
"music_service": "bandcamp.com",
"music_service_name": "Bandcamp",
"submission_client": "WebScrobbler",
"submission_client_version": "v2.48.0"
"origin_url": "https://greencookierecords.bandcamp.com/track/shake

→˓",
},
"artist_name": "I Mitomani Beat",
"release_name": "Fuori Dal Tempo",
"track_name": "Shake",

}
}

At this point, we are not removing any other elements that may be submitted via the additional_info element. We’re
open to see how people will make use of these unspecified fields and may decide to formally specify or scrub elements
in the future.

1.4 Client Libraries

Client Libraries have already been written by the community for some languages.

1.4.1 Haskell

• listenbrainz-client

1.4.2 Go

• go-listenbrainz

66 Chapter 1. Contents

http://hackage.haskell.org/package/listenbrainz-client
https://github.com/kori/go-listenbrainz

ListenBrainz Documentation, Release 0.1.0

1.4.3 Rust

• listenbrainz

1.4.4 .NET

• MetaBrainz.ListenBrainz

1.4.5 Python

• pylistenbrainz

1.4.6 Java

• listenbrainz-java

1.5 Last.FM Compatible API for ListenBrainz

There are two versions of the Last.FM API used by clients to submit data to Last.FM.

1. The latest Last.FM API

2. The AudioScrobbler API v1.2

ListenBrainz can understand requests sent to both these APIs and use their data to import listens submitted by clients
like VLC and Spotify. Existing Last.FM clients can be pointed to the ListenBrainz proxy URL and they should submit
listens to ListenBrainz instead of Last.FM.

Note: This information is also present on the ListenBrainz website.

1.5.1 AudioScrobbler API v1.2

Clients supporting the old version of the AudioScrobbler API (such as VLC and Spotify) can be configured to work
with ListenBrainz by making the client point to http://proxy.listenbrainz.org and using your MusicBrainz ID
as username and the LB Authorization Token as password.

If the software you are using doesn’t support changing where the client submits info (like Spotify), you can edit your
/etc/hosts file as follows:

138.201.169.196 post.audioscrobbler.com
138.201.169.196 post2.audioscrobbler.com

1.5. Last.FM Compatible API for ListenBrainz 67

https://crates.io/crates/listenbrainz
https://github.com/Zastai/MetaBrainz.ListenBrainz
https://pypi.org/project/pylistenbrainz/
https://github.com/rain0r/listenbrainz-java/
https://www.last.fm/api
http://www.audioscrobbler.net/development/protocol/
http://proxy.listenbrainz.org
https://listenbrainz.org/lastfm-proxy
https://listenbrainz.org/profile/

ListenBrainz Documentation, Release 0.1.0

1.5.2 Last.FM API

These instructions are for setting up usage of the Last.FM API for Audacious client on Ubuntu. These steps can be
modified for other clients as well.

For development

1. Install dependencies from here, then clone the repo and install audacious.

2. Before installing audacious-plugins, edit the file audacious-plugins/src/scrobbler2/scrobbler.h to update the fol-
lowing setting on line L28. This is required only because the local server does not have https support.:

`SCROBBLER_URL` to "http://ws.audioscrobbler.com/2.0/".

3. Compile and install the plugins from the instructions given here.

4. Edit the /etc/hosts file and add the following entry:

127.0.0.1 ws.audioscrobbler.com

5. Flush dns and restart network manager using:

$ sudo /etc/init.d/dns-clean start
$ sudo /etc/init.d/networking restart

6. Register an application on MusicBrainz with the following Callback URL http://<HOSTURL>/login/
musicbrainz/post and update the received MusicBrainz Client ID and Client Secret in config.py of Listen-
Brainz. HOSTURL should be as per the settings of the server. Example: localhost

7. In Audacious, go to File > Settings > Plugins > Scrobbler2.0 and enable it. Now open its settings and then
authenticate.

8. When you get a URL from your application which look like this
http://last.fm/api/auth/?api_key=as3..234&.., replace it with
http://<HOSTURL>/api/auth/?api_key=as3..234&...

• If you are running a local server, then HOSTURL should be similar to “localhost:7080”.

• If you are not running the server, then HOSTURL should be “api.listenbrainz.org”.

For users

1. Repeat all the above steps, except for steps 2 and 6.

2. For Step 8, choose the 2nd option for HOSTURL.

1.6 Data Dumps

ListenBrainz provides data dumps that you can import into your own server or use for other purposes. The full data
dumps are created twice a month and the incremental data dumps twice a week. Each dump contains a number of
different files. Depending on your use cases, you may or may not require all of them.

We have a bunch of commands which may be useful in interacting with dumps during local development as well.

68 Chapter 1. Contents

http://redmine.audacious-media-player.org/boards/1/topics/788
http://redmine.audacious-media-player.org/boards/1/topics/788

ListenBrainz Documentation, Release 0.1.0

1.6.1 Dump mirrors

See the ListenBrainz data page for information about where to download the data dumps from.

1.6.2 File Descriptions

A ListenBrainz data dump consists of three archives:

1. listenbrainz-public-dump.tar.xz

2. listenbrainz-listens-dump.tar.xz

3. listenbrainz-listens-dump-spark.tar.xz

listenbrainz-public-dump.tar.xz

This file contains information about ListenBrainz users and statistics derived from listens submitted to ListenBrainz
calculated from users, artists, recordings etc.

listenbrainz-listens-dump.tar.xz

This is the core ListenBrainz data dump. This file contains all the listens submitted to ListenBrainz by its users.

listenbrainz-listens-dump-spark.tar.xz

This is also a dump of the core ListenBrainz listen data. These dumps are made for consumption by the ListenBrainz
Apache Spark cluster, formatting all listens into monthly JSON files that can easily be loaded into dataframes.

1.6.3 Structure of the listens dump

The ListenBrainz listen dump consists of listens broken down by year and month. At the top level there are directories
for each of the year for which we have data. Inside each year there are listens files with month number as its name:

1. listenbrainz-listens-dump-183-20200727-001004-full/listens/2005/1.listens

2. listenbrainz-listens-dump-183-20200727-001004-full/listens/2005/2.listens

3. listenbrainz-listens-dump-183-20200727-001004-full/listens/2005/3.listens

4. listenbrainz-listens-dump-183-20200727-001004-full/listens/2005/4.listens

5. listenbrainz-listens-dump-183-20200727-001004-full/listens/2005/5.listens

Each of the .listens files contains one JSON document per line – each of the JSON documents is one listen, formatted
in the standard listens format.

1.6. Data Dumps 69

https://listenbrainz.org/data

ListenBrainz Documentation, Release 0.1.0

1.6.4 Incremental dumps (BETA)

Warning: The incremental dumps are in beta. We know of some data consistency issues where incremental dumps
have fewer listens than they should. Make sure you use the full dumps if data accuracy is important.

ListenBrainz provides incremental data dumps that you can use to keep up to date with the ListenBrainz dataset without
needing to download the full dumps everytime. These dumps have the same structure as the corresponding full dumps,
but only contain data that has been submitted since the creation of the previous dump. We create incremental data
dumps twice a week.

The basic idea here is that dumps create a linear timeline of the dataset based on the time of submission of data. In
order to use the incremental dumps, you must start with the latest full dump and then, applying all incremental dumps
since will give you the latest data. The series is consistent, if you take a full dump and apply all incremental dumps
since that full dump until the next full dump, you will have the same data as the next full dump.

1.7 Server development

1.7.1 Set up ListenBrainz Server development environment

To contribute to the ListenBrainz project, you need a development environment. With your development environ-
ment, you can test your changes before submitting a patch to the project. This guide helps you set up a development
environment and run ListenBrainz locally on your workstation. By the end of this guide, you will have. . .

• Installed system dependencies

• Registered a MusicBrainz application

• Initialized development databases

• Running ListenBrainz Server

1.7.2 Clone listenbrainz-server

ListenBrainz is hosted on GitHub at https://github.com/metabrainz/listenbrainz-server/. You can use git to clone it
(or your own fork) to your computer

git clone https://github.com/metabrainz/listenbrainz-server.git

1.7.3 Install docker

ListenBrainz uses Docker for development. This helps you to easily create your development environment. Therefore,
to work on the project, you first need to install Docker. If you haven’t already, follow the docker installation instructions
for your platform.

70 Chapter 1. Contents

https://github.com/metabrainz/listenbrainz-server/
https://docs.docker.com/get-docker/
https://docs.docker.com/get-docker/

ListenBrainz Documentation, Release 0.1.0

1.7.4 Register a MusicBrainz application

Next, you need to register your application and get an OAuth token from MusicBrainz. This allows you to sign into
your development environment with your MusicBrainz account.

To register, visit the MusicBrainz applications page. There, look for the option to register your application. Fill out the
form with the following data:

• Name: (any name that you want and will recognize, e.g. listenbrainz-server-devel)

• Type: Web Application

• Callback URL: http://localhost:8100/login/musicbrainz/post/

After entering this information, you’ll have an OAuth client ID and OAuth client secret. You’ll use these for configuring
ListenBrainz.

Update config.py

With your new client ID and secret, update the ListenBrainz configuration file. If this is your first time configuring
ListenBrainz, copy the sample to a live configuration.

cp listenbrainz/config.py.sample listenbrainz/config.py

Now, open the new config.py file (don’t change config.py.sample) with your favorite text editor and look for this section.

MusicBrainz OAuth
MUSICBRAINZ_CLIENT_ID = "CLIENT_ID"
MUSICBRAINZ_CLIENT_SECRET = "CLIENT_SECRET"

Update the strings with your client ID and secret. After doing this, your ListenBrainz development environment is able
to authenticate and log in from your MusicBrainz login.

To use the Last.fm importer you need an API account at Last.fm. You can register for one at the Last.fm API page.
Look for the following section in config.py.

Lastfm API
LASTFM_API_URL = "https://ws.audioscrobbler.com/2.0/"
LASTFM_API_KEY = "USE_LASTFM_API_KEY"

Update the LASTFM_API_KEY field with your Last.fm API key.

You also need to update the API_URL field value to http://localhost:8100.

To use the Spotify importer you need to register an application on the Spotify Developer Dashboard. Use http://
localhost:8100/profile/music-services/spotify/callback/ as the callback URL.

After that, fill out the Spotify client ID and client secret in the following section of the file.

SPOTIFY
SPOTIFY_CLIENT_ID = ''
SPOTIFY_CLIENT_SECRET = ''

Note: The hostname on the callback URL must be the same as the host you use to access your development server. If
you use something other than localhost, you should update the SPOTIFY_CALLBACK_URL field accordingly.

1.7. Server development 71

https://musicbrainz.org/account/applications
https://musicbrainz.org/account/applications/register
https://last.fm/api
https://developer.spotify.com/dashboard/applications

ListenBrainz Documentation, Release 0.1.0

To use the CritiqueBrainz reviewer, you’ll need to visit the CritiqueBrainz applications page and create/register an
application. Use http://localhost:8100/ as the homepage URL and http://localhost:8100/profile/
music-services/critiquebrainz/callback/ as the callback URL.

After registering, update the CritiqueBrainz section of the file with the client ID and client secret you obtained.

CRITIQUEBRAINZ
CRITIQUEBRAINZ_CLIENT_ID = ''
CRITIQUEBRAINZ_CLIENT_SECRET = ''
CRITIQUEBRAINZ_REDIRECT_URI = 'http://localhost:8100/profile/music-services/
→˓critiquebrainz/callback/'

Note: Again, if you use something other than localhost as the host you use to access your development server, you
should update the homepage and Authorization callback URL fields accordingly when registering on Critique-
Brainz.

1.7.5 Initialize ListenBrainz containers

Next, run

./develop.sh build

in the root of the repository. Using docker-compose, this will build multiple Docker images for the different services
that make up the ListenBrainz server.

The first time you run this script it might take some time while it downloads all of the required dependencies and builds
the services.

1.7.6 Initialize ListenBrainz databases

Your development environment needs some specific databases to work. Before proceeding, run these commands to
initialize the databases.

./develop.sh manage init_db --create-db

./develop.sh manage init_ts_db --create-db

Your development environment is now ready. Now, let’s actually see ListenBrainz load locally!

1.7.7 Run the magic script

Now that the databases are initialized, you can start your development environment by running develop.sh up.

./develop.sh up

Note: By default, the web service listens on port 8100. If you already have a service listening on this port, then you
can change it by updating the ports section of docker/docker-compose.yml.

ports:
- "8100:80"

72 Chapter 1. Contents

https://critiquebrainz.org/profile/applications/

ListenBrainz Documentation, Release 0.1.0

To change the listening port, change only the value before the “:” to the port of your choice and point your browser to
http://localhost:<Port>

You will see the output of docker-compose. You can shut down listenbrainz by pressing CTRL^C. Once everything
is running, visit your new site in a browser!

http://localhost:8100

Now, you are all set to begin making changes and seeing them in real-time inside of your development environment. If
you make changes to python code, the server will be automatically restarted. If you make changes to javascript code it
will be automatically compiled.

Look at the develop.sh documentation for more details.

1.7.8 Listenbrainz containers

A listenbrainz development environment contains a number of different containers running different services. We
provide a small description of each container here:

• db: A PostgreSQL server that contains data about users

• redis: A redis server to store temporary server data

• timescale: A PostgreSQL server with the TimescaleDB extension that stores users listens

• rabbitmq: Used for passing listens between different services

• web: This is the main ListenBrainz server

• api_compat: A Last.fm-compatible API server

• websockets: A websocket server used for the user-following and playlist updates on the front-end

• static_builder: A helper service to build Javascript/Typescript and CSS assets if they are changed

Note: If you add new python dependencies to ListenBrainz by adding them to requirements.txt you will have
rebuild the web server. Use

./develop.sh build web

to do this.

If you add new Javascript dependencies you will have to rebuild the static_builder:

./develop.sh build static_builder

1.7. Server development 73

ListenBrainz Documentation, Release 0.1.0

1.7.9 Test your changes with unit tests

Unit tests are an important part of ListenBrainz. It helps make it easier for developers to test changes and help prevent
easily avoidable mistakes later on. Before committing new code or making a pull request, run the unit tests on your
code.

./test.sh

This builds and runs the containers needed for the tests. This script configures test-specific data volumes so that test
data is isolated from your development data. Note that all tests are run: Unit tests and integration tests.

To run tests faster, you can use some options to start up the test infrastructure once so that subsequent running of the
tests is faster:

./test.sh -u # build unit test containers, start up and initialise the database

./test.sh # run tests, do this as often as you need to

./test.sh -s # stop test containers, but don't remove them

./test.sh -d # stop and remove all test containers

If you made any changes to the frontend, you can run the tests for frontend using

./test.sh fe

You can also make use of the following frontend testing options for efficient testing.

./test.sh fe run frontend tests

./test.sh fe -u run frontend tests, update snapshots

./test.sh fe -b build frontend test containers

./test.sh fe -t run type-checker

When the tests complete, you will see if your changes are valid or not. These tests are a helpful way to validate new
changes without a lot of work.

1.7.10 Lint your code

ListenBrainz uses ESLint to lint the frontend codebase as part of the development process, in Webpack.

ESLint will automatically fix trivial issues and list all other issues in your terminal. Make sure to fix any error with the
code you’ve modified.

There can be quite a lot of logs in the terminal, so if you want to look only at front-end build output, you can use this
command to inspect only the static_builder logs:

74 Chapter 1. Contents

ListenBrainz Documentation, Release 0.1.0

./develop.sh logs -f static_builder

1.7.11 Using develop.sh

We provide a utility to wrap docker-compose and some common development processes.

To open a psql session to the listenbrainz database, run:

./develop.sh psql

To open a psql session to the timescale database containing user listens, run:

./develop.sh timescale

To open a bash shell in the webserver container, run:

./develop.sh bash

To open flask shell in the webserver container using ipython with the listenbrainz app loaded, run:

./develop.sh shell

To open a redis shell:

./develop.sh redis

develop.sh provides a direct interface to invoke manage.py inside a docker container. manage.py is a click script
containing a number of listenbrainz management commands. To invoke manage.py, run:

./develop.sh manage <command>

To get a list of manage.py commands, run:

./develop.sh manage --help

To pass any other command to docker-compose, run:

./develop.sh <command>

To get a list of valid docker-compose commands, see the output of docker-compose help:

./develop.sh help

1.8 Spark development

The ListenBrainz Spark environment is used for computing statistics and computing recommendations. If you’re just
working on adding a feature to the ListenBrainz webserver, you do not need to set up the Spark development environ-
ment. However, if you’re looking to add a new stat or improve our fledgling recommender system, you’ll need both the
webserver and the spark development environment.

This guide should explain how to develop and test new features for ListenBrainz that use Spark.

1.8. Spark development 75

ListenBrainz Documentation, Release 0.1.0

1.8.1 Set up the webserver

The spark environment is dependent on the webserver. Follow the steps in the guide to set up the webserver environment.

Create listenbrainz_spark/config.py

The spark environment needs a config.py in the listenbrainz_spark/ dir. Create it by copying from the sample config
file.

cp listenbrainz_spark/config.py.sample listenbrainz_spark/config.py

1.8.2 Initialize ListenBrainz Spark containers

Run the following command to build the spark containers.

./develop.sh spark build

The first time you build the containers, you also need to format the namenode container.

./develop.sh spark format

Note: You can run ./develop.sh spark format any time that you want to delete all of the data that is loaded in
spark. This will shut down the spark docker cluster, remove the docker volumes used to store the data, and recreate the
HDFS filesystem.

Your development environment is now ready. Now, let’s actually see ListenBrainz Spark in action!

1.8.3 Bring containers up

First, ensure that you are running the main ListenBrainz development environment:

./develop.sh up

Start the ListenBrainz Spark environment:

./develop.sh spark up

This will also bring up the spark reader container which is described in detail here.

1.8.4 Import data into the spark environment

We provide small data dumps that are helpful for working with real ListenBrainz data. Download and import a data
dump into your spark environment using the following commands in a separate terminal.

./develop.sh spark run spark_reader python manage.py spark request_import_incremental

Now, you are all set to begin making changes and seeing them in real-time inside of your development environment!

Once you are done with your work, shut down the containers using the following command.

76 Chapter 1. Contents

ListenBrainz Documentation, Release 0.1.0

./develop.sh spark down

Note: You’ll need to run ./develop.sh spark down every time you restart your environment, otherwise hadoop
errors out.

1.8.5 Working with request_consumer

The ListenBrainz webserver and spark cluster interact with each other via the request consumer. For a more detailed
guide on working with the request consumer, read this document.

1.8.6 Test your changes with unit tests

Unit tests are an important part of ListenBrainz Spark. It helps make it easier for developers to test changes and help
prevent easily avoidable mistakes later on. Before committing new code or making a pull request, run the unit tests on
your code.

./test.sh spark

This builds and runs the containers needed for the tests. This script configures test-specific data volumes so that test
data is isolated from your development data.

When the tests complete, you will see if your changes are valid or not. These tests are a helpful way to validate new
changes without a lot of work.

1.9 Architecture

1.9.1 Services

This is a list of the docker containers for ListenBrainz services used in local development and running in the MetaBrainz
server infrastructure.

In production, webservers run uwsgi server to serve the flask application. In development, the flask development server
is used.

Table 3: Webservers
Develop-
ment

Production Description

web listenbrainz-web-
prod

serves the ListenBrainz flask app for the website and APIs (except compat
APIs).

api_compat listenbrainz-api-
compat-prod

serves a flask app for only Last.fm compatible APIs.

websockets listenbrainz-
websockets-prod

runs websockets server to handle realtime listen and playlist updates.

1.9. Architecture 77

https://github.com/metabrainz/listenbrainz-server/blob/4a0304e33ef84981f38c38fae61511fe5efde25a/docker/docker-compose.yml#L35
https://github.com/metabrainz/listenbrainz-server/blob/4a0304e33ef84981f38c38fae61511fe5efde25a/docker/docker-compose.yml#L58
https://github.com/metabrainz/listenbrainz-server/blob/4a0304e33ef84981f38c38fae61511fe5efde25a/docker/docker-compose.yml#L88

ListenBrainz Documentation, Release 0.1.0

Table 4: Databases and Cache
Develop-
ment

Production Description

redis listenbrainz-redis redis instance used for caching all stuff ListenBrainz.
lb_db listenbrainz-

timescale
timescale instance for ListenBrainz to store listens and playlists. in devel-
opment environment, the all databases are part of lb_db container.

lb_db postgres-floyd primary database instance shared by multiple MetaBrainz projects. The
main ListenBrainz DB resides here as well as the MessyBrainz DB.

Table 5: Misc Services
Develop-
ment

Production Description

timescale_writer listenbrainz-
timescale-writer-
prod

runs timescale writer which consumes listens from incoming rabbitmq
queue, performs a messybrainz lookup and inserts listens in the database.

spotify_reader listenbrainz-spotify-
reader-prod

runs a service for importing listens from spotify API and submitting to
rabbitmq.

spark_reader listenbrainz-spark-
reader-prod

processes incoming results from spark cluster like inserting statistics in
database etc.

rabbitmq rabbitmq-clash rabbitmq instance shared by MetaBrainz services. listenbrainz queues are
under /listenbrainz vhost.

Table 6: Only Production Services
Production Description
listenbrainz-labs-api-prod serves a flask app for experimental ListenBrainz APIs
listenbrainz-api-compat-nginx-
prod

runs a nginx container for the compat API that exposes this service on a local
IP, not through gateways.

listenbrainz-cron-prod runs cron jobs used to execute periodic tasks like creating dumps, invoking spark
jobs to import dump, requesting statistics and so on.

exim-relay-listenbrainz.org smtp relay used by LB to send emails.
listenbrainz-typesense typesense (typo robust search) used by the mbid-mapping.
listenbrainz-mbid-mapping A cron container that fires off periodic MBID data processing tasks.
listenbrainz-mbid-mapping-
writer-prod

Maps incoming listens to the MBID mapping as well as updating the mapping.

listenbrainz spark cluster spark cluster to generate statistics and recommendations for LB.

1.9.2 Listen Flow

Listens can be submitted to ListenBrainz using native ListenBrainz API, Last.fm compatible API (API compat) and Au-
dioScrobbler 1.2 compatible API (API compat deprecated). Each api endpoint validates the listens submitted through
it and sends the listens to a RabbitMQ queue based on listen type. Playing Now listens are sent to the Playing Now
queue, and permanent listens are sent to the Incoming queue.

Playing now listens are ephemeral are only stored in Redis, with an expiry time of the duration of the track (if duration
is unavailable then a configurable fallback time is used). The Playing now queue is consumed by Websockets service.
The frontend connects with the Websockets service to display listens on the website without manually reloading the
page.

78 Chapter 1. Contents

https://github.com/metabrainz/listenbrainz-server/blob/4a0304e33ef84981f38c38fae61511fe5efde25a/docker/docker-compose.yml#L16
https://github.com/metabrainz/listenbrainz-server/blob/4a0304e33ef84981f38c38fae61511fe5efde25a/docker/docker-compose.yml#L21
https://github.com/metabrainz/listenbrainz-server/blob/4a0304e33ef84981f38c38fae61511fe5efde25a/docker/docker-compose.yml#L21
https://github.com/metabrainz/listenbrainz-server/blob/4a0304e33ef84981f38c38fae61511fe5efde25a/docker/docker-compose.yml#L70
https://github.com/metabrainz/listenbrainz-server/blob/4a0304e33ef84981f38c38fae61511fe5efde25a/docker/docker-compose.yml#L79
https://github.com/metabrainz/listenbrainz-server/blob/4a0304e33ef84981f38c38fae61511fe5efde25a/docker/docker-compose.spark.override.yml#L24
https://github.com/metabrainz/listenbrainz-server/blob/4a0304e33ef84981f38c38fae61511fe5efde25a/docker/docker-compose.yml#L30
https://github.com/metabrainz/listenbrainz-server/blob/4a0304e33ef84981f38c38fae61511fe5efde25a/listenbrainz/webserver/views/api.py#L34
https://github.com/metabrainz/listenbrainz-server/blob/4a0304e33ef84981f38c38fae61511fe5efde25a/listenbrainz/webserver/views/api_compat.py#L238
https://github.com/metabrainz/listenbrainz-server/blob/4a0304e33ef84981f38c38fae61511fe5efde25a/listenbrainz/webserver/views/api_compat_deprecated.py#L107
https://github.com/metabrainz/listenbrainz-server/blob/4a0304e33ef84981f38c38fae61511fe5efde25a/listenbrainz/webserver/views/api_compat_deprecated.py#L107
https://github.com/metabrainz/listenbrainz-server/blob/4a0304e33ef84981f38c38fae61511fe5efde25a/listenbrainz/webserver/views/api_tools.py#L342
https://github.com/metabrainz/listenbrainz-server/blob/4a0304e33ef84981f38c38fae61511fe5efde25a/listenbrainz/webserver/views/api_tools.py#L59

ListenBrainz Documentation, Release 0.1.0

On the other hand, “Permanent” Listens need to be persisted in the database. Timescale Writer service consumes from
the Incoming queue. It begins with querying the MessyBrainz database for MessyBrainz IDs. MessyBrainz tries to
find an existing match for the hash of the listen in the database. If one exists, it is returned otherwise it inserts the hash
and data into the database and returns a new MessyBrainz ID.

Once the writer receives MSIDs from MessyBrainz, the MSID is added to the track metadata and the listen is inserted
in the listen table. The insert deduplicates listens based on a (user, timestamp, track_name) triplet i.e. at a given
timestamp, a user can have a track entry only once. As you can see, listens of different tracks at the same timestamp
are allowed for a user. The database returns the “unique” listens to the writer which publishes those to Unique queue.

The Websockets server consumes from the unique queue and sends a list of tracks to connected clients (like the now
playing queue). The MBID mapper also consumes from the unique queue and builds a MSID->MBID mapping using
these listens.

1.9.3 Frontend Rendering

ListenBrainz frontend pages are a blend of Jinja2 templates (Python) and React components (Javascript). The Jinja2
templates used are bare bones , they include a placeholder div called react-container into which the react components
are rendered. To render the components, some data like current user info, api url etc are needed. These are injected
as json into two script tags in the HTML page, to be consumed by the React application: page-react-props and global-
react-props.

Most ListenBrainz pages will have a Jinja2 template and at least 1 React component file. The components are written
in Typescript, and we use Webpack to transpile them to javascript, to compile CSS from LESS and to minify and
bundle everything. In local development, this is all done in a separate Docker container static_builder which watches
for changes in front-end files and recompiles automatically. In production, the compilation happens only once and at
time of building the docker image.

Using script tags, we manually specify the appropriate compiled javascript file to include on a given page in its Jinja2
template.

1.10 Spark Architecture

In order to actually build features that use Spark, it is important to understand how the ListenBrainz webserver and the
Spark environment interact.

The ListenBrainz webserver and Spark cluster are completely seperate entities, only connected by RabbitMQ. This
document explains how they interact with each other, taking the example of a stat.

1.10. Spark Architecture 79

https://github.com/metabrainz/listenbrainz-server/blob/4a0304e33ef84981f38c38fae61511fe5efde25a/listenbrainz/timescale_writer/timescale_writer.py#L72
https://github.com/metabrainz/listenbrainz-server/blob/4a0304e33ef84981f38c38fae61511fe5efde25a/listenbrainz/listenstore/timescale_listenstore.py#L263
https://github.com/metabrainz/listenbrainz-server/blob/4a0304e33ef84981f38c38fae61511fe5efde25a/listenbrainz/websockets/listens_dispatcher.py
https://github.com/metabrainz/listenbrainz-server/blob/4a0304e33ef84981f38c38fae61511fe5efde25a/listenbrainz/mbid_mapping_writer/mbid_mapping_writer.py

ListenBrainz Documentation, Release 0.1.0

The ListenBrainz environment sends a request to the request_consumer script via RabbitMQ. The request consumer,
which is connected to Spark, takes the request and uses Spark to compute an appropriate response (or many responses).
The request consumer then sends these responses via RabbitMQ to the spark_reader script, which runs alongside
the webserver. The spark reader then takes the responses, and in the case of a stat, writes them to the ListenBrainz
PostgreSQL database. Now that the stat has been updated in the database, users can view them on listenbrainz.org or
via the API.

1.10.1 Developing request_consumer

Start the webserver

./develop.sh up

Start the spark containers

Follow the instructions to set up a Spark environment and import a small incremental dump so that you have some data.

Start the spark reader

The spark reader is brought up when you run ./develop.sh spark up . Now, you have everything needed to work
with Spark. You can trigger a request like this

./develop.sh manage spark request_user_stats --type=entity --range=week --entity=artists

1.11 MBID Mapping

The MBID mapping scripts allow us to take metadata from the messybrainz database and look up recording MBIDs
from the MusicBrainz database.

Note: The MBID Mapping source code lives in listenbrainz/mbid_mapping but is run independently from
the main listenbrainz web docker image. You can use your own virtual environment or use listenbrainz/
mbid_mapping/build.sh to build a standalone docker image.

1.11.1 Database tables

The MBID Mapping supplemental tables hold preprocessed data from the MusicBrainz database.

• mapping.canonical_musicbrainz_data: The MBID and Name of Recordings, Artists (and credits), and
Releases for all recordings in MusicBrainz

• mapping.canonical_recording_redirect: A mapping to find the “canonical” recording given an artist
credit + recording name

• mapping.canonical_release_redirect: A mapping to find the “canonical” release given an artist credit +
release name

These tables can be populated by running

80 Chapter 1. Contents

ListenBrainz Documentation, Release 0.1.0

python mapper/manage.py canonical-data

The update process build the new data in a temporary table and then replaces them in a single transaction. This means
that lookups can continue to run on the existing tables while the new ones are being built.

1.11.2 Fuzzy lookups

We use typesense as a way of performing quick, fuzzy lookups based on artist name and recording name

Build the typesese index with

python mapper/manage.py build-index

As with the data tables, a new typesense collection is created and then swapped into place in a single operation.

Build the mapping tables and then the typesense index directly afterwards with

python mapper/manage.py create-all

1.11.3 MBID Mapper

The mapper looks for new MSIDs submitted to messybrainz and finds a matching MBID in MusicBrainz

python3 -u -m listenbrainz.mbid_mapping_writer.mbid_mapping_writer

A background thread pushes items to be processed onto a queue - recent submissions first, and then if nothing is
to be done, old items. The processing thread pops items off the queue and then looks them up, adding them to the
mbid_mapping table.

There is also a background thread that fires off daily, which looks for listens that have been written to the listens table,
but for some reason do not have a matching mapping entry. (This could happen due to restarts or problems with the
mapper itself). These are called legacy listens.

The background thread will walk the entire listens table once a day to find these legacy listens and attempt to map
them. In the same thread we also look for mapping items with timestamp of the unix epoch (1970-01-01 00:00:00),
which indicates that they ought to be re-checked. Currently we have no automated mechanism in place for setting any
mapping entries to the epoch.

TODO: Detuning algorithm TODO: match quality types

1.12 Scripts

We have a bunch of python scripts to execute common tasks.

Note: During development, you can use ./develop.sh manage ... to execute the commands. In production, the
command should be run inside the appropriate container using python manage.py

1.12. Scripts 81

ListenBrainz Documentation, Release 0.1.0

1.12.1 ListenBrainz

These commands are helpful in running a ListenBrainz development instance and some other miscellaneous tasks.

./develop.sh manage

./develop.sh manage [OPTIONS] COMMAND [ARGS]...

add_missing_to_listen_users_metadata

./develop.sh manage add_missing_to_listen_users_metadata [OPTIONS]

clear-expired-do-not-recommends

Delete expired do not recommend entries from database

./develop.sh manage clear-expired-do-not-recommends [OPTIONS]

delete_listens

Complete all pending listen deletes and also run update script for updating listen metadata since last cron run

./develop.sh manage delete_listens [OPTIONS]

delete_pending_listens

Complete all pending listen deletes since last cron run

./develop.sh manage delete_pending_listens [OPTIONS]

init_db

Initializes database.

This process involves several steps:

1. Table structure is created.

2. Primary keys and foreign keys are created.

3. Indexes are created.

./develop.sh manage init_db [OPTIONS]

82 Chapter 1. Contents

ListenBrainz Documentation, Release 0.1.0

Options

-f, --force

Drop existing database and user.

--create-db

Create the database and user.

init_ts_db

Initializes database.

This process involves several steps:

1. Table structure is created.

2. Indexes are created.

3. Views are created

./develop.sh manage init_ts_db [OPTIONS]

Options

-f, --force

Drop existing database and user.

--create-db

Create the database and user.

listen-add-userid

Fill in the listen.user_id field based on user_name.

./develop.sh manage listen-add-userid [OPTIONS]

msb-transfer-db

Transfer MsB tables from MsB DB to TS DB

./develop.sh manage msb-transfer-db [OPTIONS]

1.12. Scripts 83

ListenBrainz Documentation, Release 0.1.0

notify_yim_users

./develop.sh manage notify_yim_users [OPTIONS]

Options

--year <year>

Year for which to send the emails

recalculate_all_user_data

Recalculate all user timestamps and listen counts.

Note: ONLY USE THIS WHEN YOU KNOW WHAT YOU ARE DOING!

./develop.sh manage recalculate_all_user_data [OPTIONS]

refresh-top-manual-mappings

Refresh top manual msid-mbid mappings view

./develop.sh manage refresh-top-manual-mappings [OPTIONS]

run-daily-jams

Generate daily playlists for users soon after the new day begins in their timezone. This is an internal LB method and
not a core function of troi.

./develop.sh manage run-daily-jams [OPTIONS]

run-spotify-metadata-cache-seeder

Query spotify new releases api for new releases and submit those to our cache as seeds

./develop.sh manage run-spotify-metadata-cache-seeder [OPTIONS]

84 Chapter 1. Contents

ListenBrainz Documentation, Release 0.1.0

run_websockets

./develop.sh manage run_websockets [OPTIONS]

Options

-h, --host <host>

Default
0.0.0.0

-p, --port <port>

Default
7082

-d, --debug

Turns debugging mode on or off. If specified, overrides ‘DEBUG’ value in the config file.

set_rate_limits

./develop.sh manage set_rate_limits [OPTIONS] PER_TOKEN_LIMIT PER_IP_LIMIT
WINDOW_SIZE

Arguments

PER_TOKEN_LIMIT

Required argument

PER_IP_LIMIT

Required argument

WINDOW_SIZE

Required argument

submit-release

Submit a release from MusicBrainz to the local ListenBrainz instance

Specify -u to use the token of this user when submitting, or -t to specify a specific token.

./develop.sh manage submit-release [OPTIONS] RELEASEMBID

1.12. Scripts 85

ListenBrainz Documentation, Release 0.1.0

Options

-u, --user <user>

-t, --token <token>

Arguments

RELEASEMBID

Required argument

update-msid-tables

Scan tables using msids to find matching mbids from mapping tables and update them.

./develop.sh manage update-msid-tables [OPTIONS]

update_user_emails

./develop.sh manage update_user_emails [OPTIONS]

update_user_listen_data

Scans listen table and update listen metadata for all users

./develop.sh manage update_user_listen_data [OPTIONS]

1.12.2 Dump Manager

These commands are used to export and import dumps.

./develop.sh manage dump

./develop.sh manage dump [OPTIONS] COMMAND [ARGS]...

check_dump_ages

Check to make sure that data dumps are sufficiently fresh. Send mail if they are not.

./develop.sh manage dump check_dump_ages [OPTIONS]

86 Chapter 1. Contents

ListenBrainz Documentation, Release 0.1.0

create_feedback

Create a spark formatted dump of user/recommendation feedback data.

./develop.sh manage dump create_feedback [OPTIONS]

Options

-l, --location <location>

path to the directory where the dump should be made

-t, --threads <threads>

the number of threads to be used while compression

create_full

Create a ListenBrainz data dump which includes a private dump, a statistics dump and a dump of the actual listens
from the listenstore.

Args:
location (str): path to the directory where the dump should be made threads (int): the number of threads to be
used while compression dump_id (int): the ID of the ListenBrainz data dump do_listen_dump: If True, make a
listens dump do_spark_dump: If True, make a spark listens dump do_db_dump: If True, make a public/private
postgres dump do_timescale_dump: If True, make a public/private timescale dump do_stats_dump: If True,
make a couchdb stats dump

./develop.sh manage dump create_full [OPTIONS]

Options

-l, --location <location>

path to the directory where the dump should be made

-t, --threads <threads>

the number of threads to be used while compression

--dump-id <dump_id>

the ID of the ListenBrainz data dump

--listen, --no-listen

--spark, --no-spark

--db, --no-db

--timescale, --no-timescale

--stats, --no-stats

1.12. Scripts 87

ListenBrainz Documentation, Release 0.1.0

create_incremental

./develop.sh manage dump create_incremental [OPTIONS]

Options

-l, --location <location>

-t, --threads <threads>

--dump-id <dump_id>

create_mbcanonical

Create a dump of the canonical mapping tables. This includes the following items:

• metadata for canonical recordings

• canonical recording redirect

• canonical release redirect

These tables are created by the mapping canonical-data management command. If canonical-data is called with –use-
lb-conn then the canonical metadata and recording redirect tables will

be in the listenbrainz timescale database connection

If called with –use-mb-conn then all tables will be in the musicbrainz database connection. The canonical release
redirect table will always be in the musicbrainz database connection.

./develop.sh manage dump create_mbcanonical [OPTIONS]

Options

-l, --location <location>

path to the directory where the dump should be made

--use-lb-conn, --use-mb-conn

Dump the metadata table from the listenbrainz database

create_parquet

./develop.sh manage dump create_parquet [OPTIONS]

88 Chapter 1. Contents

ListenBrainz Documentation, Release 0.1.0

delete_old_dumps

./develop.sh manage dump delete_old_dumps [OPTIONS] LOCATION

Arguments

LOCATION

Required argument

import_dump

Import a ListenBrainz dump into the database.

Args:
private_archive (str): the path to the ListenBrainz private dump to be imported private_timescale_archive (str):
the path to the ListenBrainz private timescale dump to be imported public_archive (str): the path to the Listen-
Brainz public dump to be imported public_timescale_archive (str): the path to the ListenBrainz public timescale
dump to be imported listen_archive (str): the path to the ListenBrainz listen dump archive to be imported threads
(int): the number of threads to use during decompression, defaults to 1

Note: This method tries to import the private db dump first, followed by the public db dump. However, in absence
of a private dump, it imports sanitized versions of the user table in the public dump in order to satisfy foreign key
constraints. Then it imports the listen dump.

./develop.sh manage dump import_dump [OPTIONS]

Options

-pr, --private-archive <private_archive>

the path to the ListenBrainz private dump to be imported

--private-timescale-archive <private_timescale_archive>

the path to the ListenBrainz private timescale dump to be imported

-pu, --public-archive <public_archive>

the path to the ListenBrainz public dump to be imported

--public-timescale-archive <public_timescale_archive>

the path to the ListenBrainz public timescale dump to be imported

-l, --listen-archive <listen_archive>

the path to the ListenBrainz listen dump archive to be imported

-t, --threads <threads>

the number of threads to use during decompression, defaults to 1

1.12. Scripts 89

ListenBrainz Documentation, Release 0.1.0

1.12.3 ListenBrainz Spark

These commands are used to interact with the Spark Cluster.

python spark_manage.py

python spark_manage.py [OPTIONS] COMMAND [ARGS]...

request_consumer

Invoke script responsible for the request consumer

python spark_manage.py request_consumer [OPTIONS]

./develop.sh manage spark

./develop.sh manage spark [OPTIONS] COMMAND [ARGS]...

cron_request_all_stats

./develop.sh manage spark cron_request_all_stats [OPTIONS]

cron_request_recommendations

./develop.sh manage spark cron_request_recommendations [OPTIONS]

cron_request_similar_users

./develop.sh manage spark cron_request_similar_users [OPTIONS]

request_candidate_sets

Send the cluster a request to generate candidate sets.

./develop.sh manage spark request_candidate_sets [OPTIONS]

90 Chapter 1. Contents

ListenBrainz Documentation, Release 0.1.0

Options

--days <days>

Request recommendations to be generated on history of given number of days

--top <top>

Calculate given number of top artist.

--similar <similar>

Calculate given number of similar artist.

--html

Enable/disable HTML file generation

--user-name <users>

Generate candidate set for given users. Generate for all active users by default.

request_dataframes

Send the cluster a request to create dataframes.

./develop.sh manage spark request_dataframes [OPTIONS]

Options

--days <days>

Request model to be trained on data of given number of days

--job-type <job_type>

The type of dataframes to request. ‘recommendation_recording’ or ‘similar_users’ are allowed.

--listens-threshold <listens_threshold>

The minimum number of listens a user should have to be included in the dataframes.

request_fresh_releases

Send the cluster a request to generate release radar data.

./develop.sh manage spark request_fresh_releases [OPTIONS]

Options

--days <days>

Number of days of listens to consider for artist listening data

--database <database>

Name of the couchdb database to store data in

1.12. Scripts 91

ListenBrainz Documentation, Release 0.1.0

request_import_artist_relation

Send the spark cluster a request to import artist relation.

./develop.sh manage spark request_import_artist_relation [OPTIONS]

request_import_full

Send the cluster a request to import a new full data dump

./develop.sh manage spark request_import_full [OPTIONS]

Options

--id <id_>

Optional. ID of the full dump to import, defaults to latest dump available on FTP server

request_import_incremental

Send the cluster a request to import a new incremental data dump

./develop.sh manage spark request_import_incremental [OPTIONS]

Options

--id <id_>

Optional. ID of the incremental dump to import, defaults to latest dump available on FTP server

request_import_musicbrainz_release_dump

Send the spark cluster a request to import musicbrainz release dump.

./develop.sh manage spark request_import_musicbrainz_release_dump
[OPTIONS]

request_import_pg_tables

Send the cluster a request to import metadata table from MB db postgres

./develop.sh manage spark request_import_pg_tables [OPTIONS]

92 Chapter 1. Contents

ListenBrainz Documentation, Release 0.1.0

request_missing_mb_data

Send the cluster a request to generate missing MB data.

./develop.sh manage spark request_missing_mb_data [OPTIONS]

Options

--days <days>

Request missing musicbrainz data based on listen data of given number of days

request_model

Send the cluster a request to train the model.

For more details refer to https://spark.apache.org/docs/2.1.0/mllib-collaborative-filtering.html

./develop.sh manage spark request_model [OPTIONS]

Options

--rank <rank>

Number of hidden features

--itr <itr>

Number of iterations to run.

--lmbda <lmbda>

Controls over fitting.

--alpha <alpha>

Baseline level of confidence weighting applied.

--use-transformed-listencounts

Whether to apply a transformation function on the listencounts or use original listen playcounts

request_recommendations

Send the cluster a request to generate recommendations.

./develop.sh manage spark request_recommendations [OPTIONS]

1.12. Scripts 93

https://spark.apache.org/docs/2.1.0/mllib-collaborative-filtering.html

ListenBrainz Documentation, Release 0.1.0

Options

--top <top>

Generate given number of top artist recommendations

--similar <similar>

Generate given number of similar artist recommendations

--raw <raw>

Generate given number of raw recommendations

--user-name <users>

Generate recommendations for given users. Generate recommendations for all users by default.

request_recording_discovery

Send the cluster a request to generate recording discovery data.

./develop.sh manage spark request_recording_discovery [OPTIONS]

request_similar_artists

Send the cluster a request to generate similar artists index.

./develop.sh manage spark request_similar_artists [OPTIONS]

Options

--days <days>

Required The number of days of listens to use.

--session <session>

Required The maximum duration in seconds between two listens in a listening session.

--contribution <contribution>

Required The maximum contribution a user’s listens can make to the similarity score of a artist pair.

--threshold <threshold>

Required The minimum similarity score to include a recording pair in the simlarity index.

--limit <limit>

Required The maximum number of similar artists to generate per artist (the limit is instructive. upto 2x artists
may be returned than the limit).

--skip <skip>

Required the minimum difference threshold to mark track as skipped

94 Chapter 1. Contents

ListenBrainz Documentation, Release 0.1.0

request_similar_recordings

Send the cluster a request to generate similar recordings index.

./develop.sh manage spark request_similar_recordings [OPTIONS]

Options

--days <days>

Required The number of days of listens to use.

--session <session>

Required The maximum duration in seconds between two listens in a listening session.

--contribution <contribution>

Required The maximum contribution a user’s listens can make to the similarity score of a recording pair.

--threshold <threshold>

Required The minimum similarity score to include a recording pair in the simlarity index.

--limit <limit>

Required The maximum number of similar recordings to generate per recording (the limit is instructive. upto
2x recordings may be returned than the limit).

--skip <skip>

Required the minimum difference threshold to mark track as skipped

request_similar_users

Send the cluster a request to generate similar users.

./develop.sh manage spark request_similar_users [OPTIONS]

Options

--max-num-users <max_num_users>

The maxiumum number of similar users to return for any given user.

request_sitewide_stats

Send request to calculate sitewide stats to the spark cluster

./develop.sh manage spark request_sitewide_stats [OPTIONS]

1.12. Scripts 95

ListenBrainz Documentation, Release 0.1.0

Options

--type <type_>

Required Type of statistics to calculate

Options
entity | listening_activity

--range <range_>

Required Time range of statistics to calculate

Options
week | month | quarter | half_yearly | year | all_time | this_week | this_month | this_year

--entity <entity>

Entity for which statistics should be calculated

Options
artists | releases | recordings

request_user_stats

Send a user stats request to the spark cluster

./develop.sh manage spark request_user_stats [OPTIONS]

Options

--type <type_>

Required Type of statistics to calculate

Options
entity | listening_activity | daily_activity

--range <range_>

Required Time range of statistics to calculate

Options
week | month | quarter | half_yearly | year | all_time | this_week | this_month | this_year

--entity <entity>

Entity for which statistics should be calculated

Options
artists | releases | recordings

--database <database>

Name of the couchdb database to store data in

96 Chapter 1. Contents

ListenBrainz Documentation, Release 0.1.0

request_year_in_music

Send the cluster a request to generate all year in music statistics.

./develop.sh manage spark request_year_in_music [OPTIONS]

Options

--year <year>

Year for which to calculate the stat

request_yim_artist_map

Send the cluster a request to generate artist map data and then once the data has been imported generate YIM artist
map.

./develop.sh manage spark request_yim_artist_map [OPTIONS]

Options

--year <year>

Year for which to generate the playlists

request_yim_day_of_week

Send request to calculate most listened day of week to the spark cluster

./develop.sh manage spark request_yim_day_of_week [OPTIONS]

Options

--year <year>

Year for which to calculate the stat

request_yim_listen_count

Send request to calculate yearly listen count stat to the spark cluster

./develop.sh manage spark request_yim_listen_count [OPTIONS]

1.12. Scripts 97

ListenBrainz Documentation, Release 0.1.0

Options

--year <year>

Year for which to calculate the stat

request_yim_listening_time

Send request to calculate yearly total listening time stat for each user to the spark cluster

./develop.sh manage spark request_yim_listening_time [OPTIONS]

Options

--year <year>

Year for which to calculate the stat

request_yim_listens_per_day

Send request to calculate listens per day stat to the spark cluster

./develop.sh manage spark request_yim_listens_per_day [OPTIONS]

Options

--year <year>

Year for which to calculate the stat

request_yim_most_listened_year

Send request to calculate most listened year stat to the spark cluster

./develop.sh manage spark request_yim_most_listened_year [OPTIONS]

Options

--year <year>

Year for which to calculate the stat

98 Chapter 1. Contents

ListenBrainz Documentation, Release 0.1.0

request_yim_new_artists_discovered

Send request to calculate count of new artists user listened to this year.

./develop.sh manage spark request_yim_new_artists_discovered
[OPTIONS]

Options

--year <year>

Year for which to calculate the stat

request_yim_new_release_stats

Send request to calculate new release stats to the spark cluster

./develop.sh manage spark request_yim_new_release_stats [OPTIONS]

Options

--year <year>

Year for which to calculate the stat

request_yim_playlists

Send the cluster a request to generate tracks of the year data and then once the data has been imported generate YIM
playlists.

./develop.sh manage spark request_yim_playlists [OPTIONS]

Options

--year <year>

Year for which to generate the playlists

request_yim_similar_users

Send the cluster a request to generate similar users for Year in Music.

./develop.sh manage spark request_yim_similar_users [OPTIONS]

1.12. Scripts 99

ListenBrainz Documentation, Release 0.1.0

Options

--year <year>

Year for which to calculate the stat

request_yim_top_stats

Send request to calculate top stats to the spark cluster

./develop.sh manage spark request_yim_top_stats [OPTIONS]

Options

--year <year>

Year for which to calculate the stat

1.13 Production Deployment

Note: This documentation is for ListenBrainz maintainers for when they deploy the website

1.13.1 Cron

You can cleanly shut down cron from docker-server-configs by running

./scripts/terminate_lb_cron.sh

If no cron jobs are running, this will stop and delete the cron container. If a job is running it will notify you and not
stop the container.

1.14 Building Docker Images

Note: This documentation is for ListenBrainz maintainers for when they deploy the website

1.14.1 Production Images

When a Github release is made, production images are automatically built and pushed by the Publish image action.
The git tag associated with the Github release is used as docker image tag.

100 Chapter 1. Contents

https://github.com/metabrainz/listenbrainz-server/actions/workflows/deploy-image.yml

ListenBrainz Documentation, Release 0.1.0

1.14.2 Test Images

From time to time we want to build images to test PRs on beta.listenbrainz.org or test.listenbrainz.org. To build images
for this purpose you can either use the docker/push.sh script or Github Actions.

Note: Usually, the tags for these images is test or beta. However, you can use any arbitrary image tag. This is useful if
you want to test multiple PRs simultaneously or avoid conflicting with another developer’s images. These image tags
appear on Dockerhub forever unless removed manually. To my knowledge it is not an issue. Regardless its not a bad
idea to login to Dockerhub once in a while and clean up such unused test tags.

1.14.3 Using Github Actions

1. Go to Actions -> Push deployment image.

2. Select the branch and enter the docker image tag (version).

1. Click on Run Workflow.

2. The image will be built and pushed to Docker Hub with the desired tag.

3. To monitor the status of the build, wait for the workflow run to appear. You may need to wait for a few seconds
and reload the page.

1.14. Building Docker Images 101

https://github.com/metabrainz/listenbrainz-server/actions/workflows/push-dev-image.yml

ListenBrainz Documentation, Release 0.1.0

1.14.4 Using docker/push.sh script

If Github Actions is unavailable or you want to take advantage of local docker build cache, you can use the
docker/push.sh script. You will need to be correctly authenticated to docker hub to push this image. From the repository
root, invoke the script with desired docker image tag. For example:

./docker/push.sh beta

1.15 Data Dumps

1.15.1 Check FTP Dumps age script

Dumps may fail in production due to many reasons. We have a script to check the latest dump available on the FTP is
younger than a specified timeframe. If the latest dump is older, an email is sent to the maintainers. This email is usually
responsible for bringing dump failures to the notice of maintainers. This script is part of the ListenBrainz cron jobs
and is scheduled to run a few hours after the regular dump times. If dumps are not working but no email was received
by the maintainers, it is possible that the cron jobs are not setup properly.

1.15.2 Logs

Looking at the logs is a good starting point to debug dump failures, the log file is located at /logs/dumps.log inside
the listenbrainz-cron-prod container. The output of dump-related jobs is redirected in the crontab . Open a bash shell
in the cron container by running docker exec -it listenbrainz-cron-prod bash.

This file is large, so use tail instead of cat to view the logs. For example: tail -n 500 /logs/dumps.log will
list the last 500 lines of the log file.

From the log file, you should probably be able to see whether the error occurred in python part of the code or bash
script. If you see a python stack trace, it is likely that sentry recorded the error too. The sentry view sometimes offers
more details so searching sentry for this error can be helpful.

102 Chapter 1. Contents

https://github.com/metabrainz/listenbrainz-server/blob/1f2e2634126a32a75bdb717b741d55099f4dd411/docker/services/cron/crontab#L8-L19
https://sentry.metabrainz.org/organizations/metabrainz/issues/?project=15

ListenBrainz Documentation, Release 0.1.0

1.15.3 Manually triggering dumps

If you want to re-run a dump after it fails, or manually trigger a dump then you can run the dump script manually.
A few things need to be kept in mind while doing this, the create_full invoked to do the dump accepts a --dump-id
parameter to number the dump. If no id specified, the script will look in the database for the last id, add 1 to it and use
it for the dump.

select * from data_dump order by created desc;

If a dump failed too early in the script, it won’t have an id in the database. Otherwise, it will have created one before
failing. To be sure, check the data_dump table in the database. If the id exists and the dump had failed , it makes sense
to reuse that dump id when generating the dump again manually.

Also the bash script to create dumps performs setup, cleanup and syncing to FTP tasks so do not invoke the python
command directly. The bash script forwards arguments to the python command so you can pass any arguments that the
python command accepts to it as well. See the current version of the script in the repository for more details. Here is
an example of how you can manually specify the id of the dump (copied the cronjob command at the time of writing
and added the argument before redirecting):

flock -x -n /var/lock/lb-dumps.lock /code/listenbrainz/admin/create-dumps.sh incremental␣
→˓--last-dump-id 700 >> /logs/dumps.log 2>&1

Note: Full dumps take over 12 hours to complete. If you run the command directly and close the terminal before full
dumps completion, the dumps will get interrupted and fail. So either run the command inside a tmux session or use a
combination of nohup and & with the dump command.

1.16 MBID Mapping

For a background on how the mapping works, see MBID Mapping

1.16.1 Containers

The mapping tools run in two containers:

• mbid-mapping-writer-prod: Populates the mbid_mapping table for new listens. Built from the
main ListenBrainz dockerfile.

• mbid-mapping: Periodically generates the MBID Mapping supplemental tables, typesense index,
and huesound index. Built from listenbrainz/mbid_mapping/Dockerfile

1.16.2 Data sources

In the production environment, the mbid-mapping container reads from the MB replica on aretha.

1.16. MBID Mapping 103

ListenBrainz Documentation, Release 0.1.0

1.16.3 Debugging lookups

If a listen isn’t showing up as mapped on ListenBrainz, one of the following might be true:

• The item wasn’t in musicbrainz at the time that the lookup was made

• There is a bug in the mapping algorithm

If the recording doesn’t exist in MusicBrainz during mapping, a row will be added to the mbid_mapping table with
the MSID and a match_type of no_match. Currently no_match values aren’t looked up again automatically.

You can test the results of a lookup by using https://labs.api.listenbrainz.org/explain-mbid-mapping
<https://labs.api.listenbrainz.org/explain-mbid-mapping> This uses the same lookup process that the mapper
uses. If this returns a result, but there is no mapping present it could be due to data being recently added to
MusicBrainz or improvements to the mapping algorithm.

If no data is returned or an incorrect match is being returned, this should be reported to us, by adding a comment to
LB-1036 <https://tickets.metabrainz.org/browse/LB-1036>.

In this case you can retrigger a lookup by seting the mbid_mapping.last_updated field to ‘1970-01-01 00:00:00’
(the unix epoch). The mapper will pick up these items and put them on the queue again.

UPDATE mbid_mapping SET last_updated = 'epoch' WHERE recording_msid = '00000737-3a59-
→˓4499-b30a-31fe2464555d';
UPDATE mbid_mapping SET last_updated = 'epoch' WHERE match_type = 'no_match' AND last_
→˓updated = now() - interval '1 day';

In the LB production environment these items will be picked up and re-processed once a day.

1.17 Debugging Spotify Reader

To debug spotify reader issues, begin with checking logs of the container. The ListenBrainz admin panel has exter-
nal_service_ouath and listens_importer table which show the user’s token, importer error if any, last import time and
latest listen imported for that user.

Sometimes spotify’s recent listens API does not show updated listens for hours while the currently playing endpoint
does. So the user may see currently playing listens arrive but the “permanent” listens missing. To confirm this is the
case, you can use the spotify api console and directly query the api to see what listens spotify is currently returning.
You can get the user’s spotify access token for this endpoint from admin panel. If the api does not have listens, it makes
sense those to not be present in ListenBrainz yet. However if the api returns the listens but those are not in ListenBrainz,
there is likely an issue with Spotify Reader. Consider adding more logging to the container to debug issues.

1.18 Updating Production Database Schema

Warning: The production database cluster is serious business . Think twice whenever interacting with it and
check with others in face of the slightest doubt.

The listenbrainz image on which most of ListenBrainz containers run has the psql command installed. You can exec
into a container and use the psql to connect to the relevant database and execute scripts. The connection parameters
to connect to the databases are in /code/listenbrainz/listenbrainz/config.py.

Whenever modifying the database, run the sql commands inside a transaction if possible. Once you have started the
transaction, execute the commands you want to. Do not commit the transaction yet. Double check the state of the

104 Chapter 1. Contents

https://listenbrainz.org/admin
https://developer.spotify.com/console/get-recently-played/

ListenBrainz Documentation, Release 0.1.0

database to ensure the changes are in line with what you expect. If so commit the transaction otherwise rollback and
contact other maintainers.

1.19 Pull Requests Policy

It is recommended that maintainers (unless the change is urgently needed) do not push directly or merge pull requests
without review . By default, one approving review is sufficient to merge a pull request. The pull request author or the
reviewer can request more reviews or review from a specific person as they deem necessary.

1.19. Pull Requests Policy 105

ListenBrainz Documentation, Release 0.1.0

106 Chapter 1. Contents

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

107

ListenBrainz Documentation, Release 0.1.0

108 Chapter 2. Indices and tables

HTTP ROUTING TABLE

/1
GET /1/(user_name)/pins, 17
GET /1/(user_name)/pins/current, 19
GET /1/(user_name)/pins/following, 18
GET /1/art/(custom_name)/(user_name)/(time_range)/(int:image_size),

49
GET /1/art/grid-stats/(user_name)/(time_range)/(int:dimension)/(int:layout)/(int:image_size),

48
GET /1/art/year-in-music/2022/(user_name), 49
GET /1/cf/recommendation/user/(user_name)/recording,

43
GET /1/explore/color/(color), 50
GET /1/explore/fresh-releases/, 50
GET /1/feedback/recording/(recording_mbid)/get-feedback-mbid,

14
GET /1/feedback/recording/(recording_msid)/get-feedback,

15
GET /1/feedback/user/(user_name)/get-feedback,

14
GET /1/feedback/user/(user_name)/get-feedback-for-recordings,

15
GET /1/latest-import, 7
GET /1/metadata/get_manual_mapping/, 36
GET /1/metadata/lookup/, 36
GET /1/metadata/recording/, 32
GET /1/playlist/(playlist_mbid), 11
GET /1/recommendation/feedback/user/(user_name),

45
GET /1/recommendation/feedback/user/(user_name)/recordings,

46
GET /1/search/users/, 3
GET /1/stats/sitewide/artist-map, 31
GET /1/stats/sitewide/artists, 26
GET /1/stats/sitewide/listening-activity, 30
GET /1/stats/sitewide/recordings, 29
GET /1/stats/sitewide/releases, 27
GET /1/stats/user/(user_name)/artist-map, 25
GET /1/stats/user/(user_name)/artists, 19
GET /1/stats/user/(user_name)/daily-activity,

24
GET /1/stats/user/(user_name)/listening-activity,

23

GET /1/stats/user/(user_name)/recordings, 22
GET /1/stats/user/(user_name)/releases, 20
GET /1/stats/user/(user_name)/year-in-music,

32
GET /1/stats/user/(user_name)/year-in-music/(int:year),

32
GET /1/status/get-dump-info, 51
GET /1/user/(playlist_user_name)/playlists, 9
GET /1/user/(playlist_user_name)/playlists/collaborator,

10
GET /1/user/(playlist_user_name)/playlists/createdfor,

9
GET /1/user/(user_name)/feed/events, 38
GET /1/user/(user_name)/followers, 42
GET /1/user/(user_name)/following, 42
GET /1/user/(user_name)/listen-count, 4
GET /1/user/(user_name)/listens, 3
GET /1/user/(user_name)/playing-now, 4
GET /1/user/(user_name)/similar-to/(other_user_name),

5
GET /1/user/(user_name)/similar-users, 4
GET /1/validate-token, 5
POST /1/art/grid/, 47
POST /1/delete-listen, 6
POST /1/feedback/import, 16
POST /1/feedback/recording-feedback, 14
POST /1/latest-import, 8
POST /1/metadata/submit_manual_mapping/, 36
POST /1/pin, 16
POST /1/pin/delete/(row_id), 17
POST /1/pin/unpin, 16
POST /1/playlist/(playlist_mbid)/copy, 13
POST /1/playlist/(playlist_mbid)/delete, 13
POST /1/playlist/(playlist_mbid)/export/(service),

13
POST /1/playlist/(playlist_mbid)/item/add, 11
POST /1/playlist/(playlist_mbid)/item/add/(int:offset),

11
POST /1/playlist/(playlist_mbid)/item/delete,

12
POST /1/playlist/(playlist_mbid)/item/move,

12

109

ListenBrainz Documentation, Release 0.1.0

POST /1/playlist/create, 10
POST /1/playlist/edit/(playlist_mbid), 11
POST /1/recommendation/feedback/delete, 45
POST /1/recommendation/feedback/submit, 44
POST /1/submit-listens, 3
POST /1/user/(user_name)/feed/events/delete,

39
POST /1/user/(user_name)/feed/events/hide, 40
POST /1/user/(user_name)/feed/events/unhide,

40
POST /1/user/(user_name)/follow, 42
POST /1/user/(user_name)/timeline-event/create/notification,

37
POST /1/user/(user_name)/timeline-event/create/recommend-personal,

41
POST /1/user/(user_name)/timeline-event/create/recording,

37
POST /1/user/(user_name)/timeline-event/create/review,

38
POST /1/user/(user_name)/unfollow, 42

110 HTTP Routing Table

INDEX

Symbols
./develop.sh-manage-dump-create_feedback

command line option
--location, 87
--threads, 87
-l, 87
-t, 87

./develop.sh-manage-dump-create_full
command line option

--db, 87
--dump-id, 87
--listen, 87
--location, 87
--no-db, 87
--no-listen, 87
--no-spark, 87
--no-stats, 87
--no-timescale, 87
--spark, 87
--stats, 87
--threads, 87
--timescale, 87
-l, 87
-t, 87

./develop.sh-manage-dump-create_incremental
command line option

--dump-id, 88
--location, 88
--threads, 88
-l, 88
-t, 88

./develop.sh-manage-dump-create_mbcanonical
command line option

--location, 88
--use-lb-conn, 88
--use-mb-conn, 88
-l, 88

./develop.sh-manage-dump-delete_old_dumps
command line option

LOCATION, 89
./develop.sh-manage-dump-import_dump

command line option

--listen-archive, 89
--private-archive, 89
--private-timescale-archive, 89
--public-archive, 89
--public-timescale-archive, 89
--threads, 89
-l, 89
-pr, 89
-pu, 89
-t, 89

./develop.sh-manage-init_db command line
option

--create-db, 83
--force, 83
-f, 83

./develop.sh-manage-init_ts_db command line
option

--create-db, 83
--force, 83
-f, 83

./develop.sh-manage-notify_yim_users
command line option

--year, 84
./develop.sh-manage-run_websockets command

line option
--debug, 85
--host, 85
--port, 85
-d, 85
-h, 85
-p, 85

./develop.sh-manage-set_rate_limits command
line option

PER_IP_LIMIT, 85
PER_TOKEN_LIMIT, 85
WINDOW_SIZE, 85

./develop.sh-manage-spark-request_candidate_sets
command line option

--days, 91
--html, 91
--similar, 91
--top, 91

111

ListenBrainz Documentation, Release 0.1.0

--user-name, 91
./develop.sh-manage-spark-request_dataframes

command line option
--days, 91
--job-type, 91
--listens-threshold, 91

./develop.sh-manage-spark-request_fresh_releases
command line option

--database, 91
--days, 91

./develop.sh-manage-spark-request_import_full
command line option

--id, 92
./develop.sh-manage-spark-request_import_incremental

command line option
--id, 92

./develop.sh-manage-spark-request_missing_mb_data
command line option

--days, 93
./develop.sh-manage-spark-request_model

command line option
--alpha, 93
--itr, 93
--lmbda, 93
--rank, 93
--use-transformed-listencounts, 93

./develop.sh-manage-spark-request_recommendations
command line option

--raw, 94
--similar, 94
--top, 94
--user-name, 94

./develop.sh-manage-spark-request_similar_artists
command line option

--contribution, 94
--days, 94
--limit, 94
--session, 94
--skip, 94
--threshold, 94

./develop.sh-manage-spark-request_similar_recordings
command line option

--contribution, 95
--days, 95
--limit, 95
--session, 95
--skip, 95
--threshold, 95

./develop.sh-manage-spark-request_similar_users
command line option

--max-num-users, 95
./develop.sh-manage-spark-request_sitewide_stats

command line option
--entity, 96

--range, 96
--type, 96

./develop.sh-manage-spark-request_user_stats
command line option

--database, 96
--entity, 96
--range, 96
--type, 96

./develop.sh-manage-spark-request_year_in_music
command line option

--year, 97
./develop.sh-manage-spark-request_yim_artist_map

command line option
--year, 97

./develop.sh-manage-spark-request_yim_day_of_week
command line option

--year, 97
./develop.sh-manage-spark-request_yim_listen_count

command line option
--year, 98

./develop.sh-manage-spark-request_yim_listening_time
command line option

--year, 98
./develop.sh-manage-spark-request_yim_listens_per_day

command line option
--year, 98

./develop.sh-manage-spark-request_yim_most_listened_year
command line option

--year, 98
./develop.sh-manage-spark-request_yim_new_artists_discovered

command line option
--year, 99

./develop.sh-manage-spark-request_yim_new_release_stats
command line option

--year, 99
./develop.sh-manage-spark-request_yim_playlists

command line option
--year, 99

./develop.sh-manage-spark-request_yim_similar_users
command line option

--year, 100
./develop.sh-manage-spark-request_yim_top_stats

command line option
--year, 100

./develop.sh-manage-submit-release command
line option

--token, 86
--user, 86
-t, 86
-u, 86
RELEASEMBID, 86

--alpha
./develop.sh-manage-spark-request_model

command line option, 93

112 Index

ListenBrainz Documentation, Release 0.1.0

--contribution
./develop.sh-manage-spark-request_similar_artists

command line option, 94
./develop.sh-manage-spark-request_similar_recordings

command line option, 95
--create-db

./develop.sh-manage-init_db command
line option, 83

./develop.sh-manage-init_ts_db command
line option, 83

--database
./develop.sh-manage-spark-request_fresh_releases

command line option, 91
./develop.sh-manage-spark-request_user_stats

command line option, 96
--days

./develop.sh-manage-spark-request_candidate_sets
command line option, 91

./develop.sh-manage-spark-request_dataframes
command line option, 91

./develop.sh-manage-spark-request_fresh_releases
command line option, 91

./develop.sh-manage-spark-request_missing_mb_data
command line option, 93

./develop.sh-manage-spark-request_similar_artists
command line option, 94

./develop.sh-manage-spark-request_similar_recordings
command line option, 95

--db
./develop.sh-manage-dump-create_full

command line option, 87
--debug

./develop.sh-manage-run_websockets
command line option, 85

--dump-id
./develop.sh-manage-dump-create_full

command line option, 87
./develop.sh-manage-dump-create_incremental

command line option, 88
--entity

./develop.sh-manage-spark-request_sitewide_stats
command line option, 96

./develop.sh-manage-spark-request_user_stats
command line option, 96

--force
./develop.sh-manage-init_db command

line option, 83
./develop.sh-manage-init_ts_db command

line option, 83
--host

./develop.sh-manage-run_websockets
command line option, 85

--html
./develop.sh-manage-spark-request_candidate_sets

command line option, 91
--id

./develop.sh-manage-spark-request_import_full
command line option, 92

./develop.sh-manage-spark-request_import_incremental
command line option, 92

--itr
./develop.sh-manage-spark-request_model

command line option, 93
--job-type

./develop.sh-manage-spark-request_dataframes
command line option, 91

--limit
./develop.sh-manage-spark-request_similar_artists

command line option, 94
./develop.sh-manage-spark-request_similar_recordings

command line option, 95
--listen

./develop.sh-manage-dump-create_full
command line option, 87

--listen-archive
./develop.sh-manage-dump-import_dump

command line option, 89
--listens-threshold

./develop.sh-manage-spark-request_dataframes
command line option, 91

--lmbda
./develop.sh-manage-spark-request_model

command line option, 93
--location

./develop.sh-manage-dump-create_feedback
command line option, 87

./develop.sh-manage-dump-create_full
command line option, 87

./develop.sh-manage-dump-create_incremental
command line option, 88

./develop.sh-manage-dump-create_mbcanonical
command line option, 88

--max-num-users
./develop.sh-manage-spark-request_similar_users

command line option, 95
--no-db

./develop.sh-manage-dump-create_full
command line option, 87

--no-listen
./develop.sh-manage-dump-create_full

command line option, 87
--no-spark

./develop.sh-manage-dump-create_full
command line option, 87

--no-stats
./develop.sh-manage-dump-create_full

command line option, 87
--no-timescale

Index 113

ListenBrainz Documentation, Release 0.1.0

./develop.sh-manage-dump-create_full
command line option, 87

--port
./develop.sh-manage-run_websockets

command line option, 85
--private-archive

./develop.sh-manage-dump-import_dump
command line option, 89

--private-timescale-archive
./develop.sh-manage-dump-import_dump

command line option, 89
--public-archive

./develop.sh-manage-dump-import_dump
command line option, 89

--public-timescale-archive
./develop.sh-manage-dump-import_dump

command line option, 89
--range

./develop.sh-manage-spark-request_sitewide_stats
command line option, 96

./develop.sh-manage-spark-request_user_stats
command line option, 96

--rank
./develop.sh-manage-spark-request_model

command line option, 93
--raw

./develop.sh-manage-spark-request_recommendations
command line option, 94

--session
./develop.sh-manage-spark-request_similar_artists

command line option, 94
./develop.sh-manage-spark-request_similar_recordings

command line option, 95
--similar

./develop.sh-manage-spark-request_candidate_sets
command line option, 91

./develop.sh-manage-spark-request_recommendations
command line option, 94

--skip
./develop.sh-manage-spark-request_similar_artists

command line option, 94
./develop.sh-manage-spark-request_similar_recordings

command line option, 95
--spark

./develop.sh-manage-dump-create_full
command line option, 87

--stats
./develop.sh-manage-dump-create_full

command line option, 87
--threads

./develop.sh-manage-dump-create_feedback
command line option, 87

./develop.sh-manage-dump-create_full
command line option, 87

./develop.sh-manage-dump-create_incremental
command line option, 88

./develop.sh-manage-dump-import_dump
command line option, 89

--threshold
./develop.sh-manage-spark-request_similar_artists

command line option, 94
./develop.sh-manage-spark-request_similar_recordings

command line option, 95
--timescale

./develop.sh-manage-dump-create_full
command line option, 87

--token
./develop.sh-manage-submit-release

command line option, 86
--top

./develop.sh-manage-spark-request_candidate_sets
command line option, 91

./develop.sh-manage-spark-request_recommendations
command line option, 94

--type
./develop.sh-manage-spark-request_sitewide_stats

command line option, 96
./develop.sh-manage-spark-request_user_stats

command line option, 96
--use-lb-conn

./develop.sh-manage-dump-create_mbcanonical
command line option, 88

--use-mb-conn
./develop.sh-manage-dump-create_mbcanonical

command line option, 88
--use-transformed-listencounts

./develop.sh-manage-spark-request_model
command line option, 93

--user
./develop.sh-manage-submit-release

command line option, 86
--user-name

./develop.sh-manage-spark-request_candidate_sets
command line option, 91

./develop.sh-manage-spark-request_recommendations
command line option, 94

--year
./develop.sh-manage-notify_yim_users

command line option, 84
./develop.sh-manage-spark-request_year_in_music

command line option, 97
./develop.sh-manage-spark-request_yim_artist_map

command line option, 97
./develop.sh-manage-spark-request_yim_day_of_week

command line option, 97
./develop.sh-manage-spark-request_yim_listen_count

command line option, 98
./develop.sh-manage-spark-request_yim_listening_time

114 Index

ListenBrainz Documentation, Release 0.1.0

command line option, 98
./develop.sh-manage-spark-request_yim_listens_per_day

command line option, 98
./develop.sh-manage-spark-request_yim_most_listened_year

command line option, 98
./develop.sh-manage-spark-request_yim_new_artists_discovered

command line option, 99
./develop.sh-manage-spark-request_yim_new_release_stats

command line option, 99
./develop.sh-manage-spark-request_yim_playlists

command line option, 99
./develop.sh-manage-spark-request_yim_similar_users

command line option, 100
./develop.sh-manage-spark-request_yim_top_stats

command line option, 100
-d

./develop.sh-manage-run_websockets
command line option, 85

-f
./develop.sh-manage-init_db command

line option, 83
./develop.sh-manage-init_ts_db command

line option, 83
-h

./develop.sh-manage-run_websockets
command line option, 85

-l
./develop.sh-manage-dump-create_feedback

command line option, 87
./develop.sh-manage-dump-create_full

command line option, 87
./develop.sh-manage-dump-create_incremental

command line option, 88
./develop.sh-manage-dump-create_mbcanonical

command line option, 88
./develop.sh-manage-dump-import_dump

command line option, 89
-p

./develop.sh-manage-run_websockets
command line option, 85

-pr
./develop.sh-manage-dump-import_dump

command line option, 89
-pu

./develop.sh-manage-dump-import_dump
command line option, 89

-t
./develop.sh-manage-dump-create_feedback

command line option, 87
./develop.sh-manage-dump-create_full

command line option, 87
./develop.sh-manage-dump-create_incremental

command line option, 88
./develop.sh-manage-dump-import_dump

command line option, 89
./develop.sh-manage-submit-release

command line option, 86
-u

./develop.sh-manage-submit-release
command line option, 86

A
ALLOWED_STATISTICS_RANGE (in module

data.model.common_stat), 32, 49

D
DEFAULT_ITEMS_PER_GET (in module listen-

brainz.webserver.views.api_tools), 9

L
LISTEN_MINIMUM_TS (in module listen-

brainz.listenstore), 9
LOCATION

./develop.sh-manage-dump-delete_old_dumps
command line option, 89

M
MAX_DIMENSION (in module listen-

brainz.art.cover_art_generator), 49
MAX_DURATION_LIMIT (in module listen-

brainz.webserver.views.api_tools), 9
MAX_DURATION_MS_LIMIT (in module listen-

brainz.webserver.views.api_tools), 9
MAX_IMAGE_SIZE (in module listen-

brainz.art.cover_art_generator), 49
MAX_ITEMS_PER_GET (in module listen-

brainz.webserver.views.api_tools), 9
MAX_LISTEN_PAYLOAD_SIZE (in module listen-

brainz.webserver.views.api_tools), 9
MAX_LISTEN_SIZE (in module listen-

brainz.webserver.views.api_tools), 9
MAX_LISTENS_PER_REQUEST (in module listen-

brainz.webserver.views.api_tools), 9
MAX_TAG_SIZE (in module listen-

brainz.webserver.views.api_tools), 9
MAX_TAGS_PER_LISTEN (in module listen-

brainz.webserver.views.api_tools), 9
MIN_DIMENSION (in module listen-

brainz.art.cover_art_generator), 49
MIN_IMAGE_SIZE (in module listen-

brainz.art.cover_art_generator), 49

P
PER_IP_LIMIT

./develop.sh-manage-set_rate_limits
command line option, 85

PER_TOKEN_LIMIT

Index 115

ListenBrainz Documentation, Release 0.1.0

./develop.sh-manage-set_rate_limits
command line option, 85

R
RELEASEMBID

./develop.sh-manage-submit-release
command line option, 86

W
WINDOW_SIZE

./develop.sh-manage-set_rate_limits
command line option, 85

116 Index

	Contents
	ListenBrainz API
	Reference
	Core
	Timestamps
	Constants

	Playlists
	Recordings
	Feedback API
	Pinned Recording API

	Statistics
	Constants

	Metadata
	Social
	User Timeline API
	Follow API

	Recommendations
	Recording Recommendation API
	Recording Recommendation Feedback API

	Art
	Constants

	Miscellaneous
	Explore API
	Status API

	Rate limiting

	Usage Examples
	Prerequisites
	Examples
	Submitting Listens
	Getting Listen History
	Lookup MBIDs
	Love/hate feedback
	Latest Import
	Setting
	Getting

	JSON Documentation
	Submission JSON
	Fetching listen JSON
	Payload JSON details
	Client Metadata examples
	BrainzPlayer on the ListenBrainz website playing a video from YouTube
	BrainzPlayer on the ListenBrainz website playing a video from Spotify
	Using Otter for Funkwhale on android, and submitting with Simple Scrobbler
	Rhythmbox player listening to Jamendo
	Listening to a recording from Bandcamp and submitting with the browser extension WebScrobbler

	Client Libraries
	Haskell
	Go
	Rust
	.NET
	Python
	Java

	Last.FM Compatible API for ListenBrainz
	AudioScrobbler API v1.2
	Last.FM API
	For development
	For users

	Data Dumps
	Dump mirrors
	File Descriptions
	listenbrainz-public-dump.tar.xz
	listenbrainz-listens-dump.tar.xz
	listenbrainz-listens-dump-spark.tar.xz

	Structure of the listens dump
	Incremental dumps (BETA)

	Server development
	Set up ListenBrainz Server development environment
	Clone listenbrainz-server
	Install docker
	Register a MusicBrainz application
	Update config.py

	Initialize ListenBrainz containers
	Initialize ListenBrainz databases
	Run the magic script
	Listenbrainz containers
	Test your changes with unit tests
	Lint your code
	Using develop.sh

	Spark development
	Set up the webserver
	Create listenbrainz_spark/config.py

	Initialize ListenBrainz Spark containers
	Bring containers up
	Import data into the spark environment
	Working with request_consumer
	Test your changes with unit tests

	Architecture
	Services
	Listen Flow
	Frontend Rendering

	Spark Architecture
	Developing request_consumer
	Start the webserver
	Start the spark containers
	Start the spark reader

	MBID Mapping
	Database tables
	Fuzzy lookups
	MBID Mapper

	Scripts
	ListenBrainz
	./develop.sh manage
	add_missing_to_listen_users_metadata
	clear-expired-do-not-recommends
	delete_listens
	delete_pending_listens
	init_db
	init_ts_db
	listen-add-userid
	msb-transfer-db
	notify_yim_users
	recalculate_all_user_data
	refresh-top-manual-mappings
	run-daily-jams
	run-spotify-metadata-cache-seeder
	run_websockets
	set_rate_limits
	submit-release
	update-msid-tables
	update_user_emails
	update_user_listen_data

	Dump Manager
	./develop.sh manage dump
	check_dump_ages
	create_feedback
	create_full
	create_incremental
	create_mbcanonical
	create_parquet
	delete_old_dumps
	import_dump

	ListenBrainz Spark
	python spark_manage.py
	request_consumer

	./develop.sh manage spark
	cron_request_all_stats
	cron_request_recommendations
	cron_request_similar_users
	request_candidate_sets
	request_dataframes
	request_fresh_releases
	request_import_artist_relation
	request_import_full
	request_import_incremental
	request_import_musicbrainz_release_dump
	request_import_pg_tables
	request_missing_mb_data
	request_model
	request_recommendations
	request_recording_discovery
	request_similar_artists
	request_similar_recordings
	request_similar_users
	request_sitewide_stats
	request_user_stats
	request_year_in_music
	request_yim_artist_map
	request_yim_day_of_week
	request_yim_listen_count
	request_yim_listening_time
	request_yim_listens_per_day
	request_yim_most_listened_year
	request_yim_new_artists_discovered
	request_yim_new_release_stats
	request_yim_playlists
	request_yim_similar_users
	request_yim_top_stats

	Production Deployment
	Cron

	Building Docker Images
	Production Images
	Test Images
	Using Github Actions
	Using docker/push.sh script

	Data Dumps
	Check FTP Dumps age script
	Logs
	Manually triggering dumps

	MBID Mapping
	Containers
	Data sources
	Debugging lookups

	Debugging Spotify Reader
	Updating Production Database Schema
	Pull Requests Policy

	Indices and tables
	HTTP Routing Table
	Index

